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Preface

This is a book about linear models in Statistics. A linear model describes a quanti-
tative response in terms of a linear combination of predictors. You can use a linear
model to make predictions or explain the relationship between the response and the
predictors. Linear models are very flexible and widely used in applications in phys-
ical science, engineering, social science and business. Linear models are part of the
core of Statistics and understanding them well is crucial to a broader competence in
the practice of statistics.

This is not an introductory textbook. You will need some basic prior knowledge
of statistics as might be obtained in one or two courses at the university level. You
will need to be familiar with essential ideas such as hypothesis testing, confidence
intervals, likelihood and parameter estimation. You will also need to be competent
in the mathematical methods of calculus and linear algebra. This is not a particularly
theoretical book as I have preferred intuition over rigorous proof. Nevertheless, suc-
cessful statistics requires an appreciation of the principles and it is my hope that the
reader will absorb these through the many examples I present.

This book is written in three languages: English, Mathematics and R. My moti-
vation in writing the first edition of this text was to combine these three seamlessly
to allow coherent exposition of the practice of linear modeling. This was uncommon
ten years ago but now this has become popular in the now large number of statistics
books that integrate R. Clearly it is a method that works but it does require the reader
to become somewhat fluent in R. This is not a book about learning R but like any
foreign language, one becomes proficient by practicing it rather than by memorizing
the dictionary. The reader is advised to look elsewhere for a basic introduction to R

but should not hesitate to dive into this book and pick it up as you go. I shall try to
help. See the appendix to get started.

The book website can be found at:

http://people.bath.ac.uk/jjf23/LMR

Ten years have passed since the first edition and the world of R has expanded
enormously. Here I am taking the opportunity to fix some errors and make some
improvements. This new edition makes several revisions:

1. I have reorganized the material on interpreting linear models to distinguish the
main applications of prediction and explanation. Although these two share a com-
mon basis in theory, the modeling approach diverges, depending on the purpose of
the analysis. In particular, I have introduced some elementary notions of causality
into the chapter on explanation.

xi



xii PREFACE

2. Several new topics have been added including the QR decomposition, splines,
additive models, lasso, multiple imputation and false discovery rates. The chapter
on statistical strategy from the first edition has gone but its contents have been
redistributed throughout the revised edition.

3. I have made extensive use of the ggplot2 graphics package in addition to base
graphics. As with the first edition, I assume that the reader has a basic knowledge
of R. Some of the R commands are quite complex. Sometimes I have explained
the more difficult points but the reader will need to make some effort to fully un-
derstand these commands. This effort is a necessary part of the learning process.

My thanks to many past students and readers of the first edition whose comments
and questions have helped me make many improvements to this edition. Thanks to
the builders of R (R Core Team (2013)) who made all this possible.



Chapter 1

Introduction

1.1 Before You Start

Statistics starts with a problem, proceeds with the collection of data, continues with
the data analysis and finishes with conclusions. It is a common mistake of inexperi-
enced statisticians to plunge into a complex analysis without paying attention to the
objectives or even whether the data are appropriate for the proposed analysis. As
Einstein said, the formulation of a problem is often more essential than its solution
which may be merely a matter of mathematical or experimental skill.

To formulate the problem correctly, you must:

1. Understand the physical background. Statisticians often work in collaboration
with others and need to understand something about the subject area. Regard this
as an opportunity to learn something new rather than a chore.

2. Understand the objective. Again, often you will be working with a collaborator
who may not be clear about what the objectives are. Beware of “fishing expedi-
tions” — if you look hard enough, you will almost always find something, but
that something may just be a coincidence.

3. Make sure you know what the client wants. You can often do quite different anal-
yses on the same dataset. Sometimes statisticians perform an analysis far more
complicated than the client really needed. You may find that simple descriptive
statistics are all that are needed.

4. Put the problem into statistical terms. This is a challenging step and where ir-
reparable errors are sometimes made. Once the problem is translated into the lan-
guage of statistics, the solution is often routine. Difficulties with this step explain
why artificial intelligence techniques have yet to make much impact in application
to statistics. Defining the problem is hard to program. That a statistical method
can read in and process the data is not enough. The results of an inapt analysis
may be meaningless.

It is important to understand how the data were collected.

1. Are the data observational or experimental? Are the data a sample of convenience
or were they obtained via a designed sample survey. How the data were collected
has a crucial impact on what conclusions can be made.

2. Is there nonresponse? The data you do not see may be just as important as the
data you do see.

3. Are there missing values? This is a common problem that is troublesome and time
consuming to handle.

1



2 INTRODUCTION

4. How are the data coded? In particular, how are the categorical variables repre-
sented?

5. What are the units of measurement?

6. Beware of data entry errors and other corruption of the data. This problem is all
too common — almost a certainty in any real dataset of at least moderate size.
Perform some data sanity checks.

1.2 Initial Data Analysis

This is a critical step that should always be performed. It is simple but it is vital.
You should make numerical summaries such as means, standard deviations (SDs),
maximum and minimum, correlations and whatever else is appropriate to the spe-
cific dataset. Equally important are graphical summaries. There is a wide variety of
techniques to choose from. For one variable at a time, you can make boxplots, his-
tograms, density plots and more. For two variables, scatterplots are standard while
for even more variables, there are numerous good ideas for display including interac-
tive and dynamic graphics. In the plots, look for outliers, data-entry errors, skewed or
unusual distributions and structure. Check whether the data are distributed according
to prior expectations.

Getting data into a form suitable for analysis by cleaning out mistakes and aber-
rations is often time consuming. It often takes more time than the data analysis itself.
In this book, all the data will be ready to analyze, but you should realize that in
practice this is rarely the case.

Let’s look at an example. The National Institute of Diabetes and Digestive
and Kidney Diseases conducted a study on 768 adult female Pima Indians living
near Phoenix. The following variables were recorded: number of times pregnant,
plasma glucose concentration at 2 hours in an oral glucose tolerance test, diastolic
blood pressure (mmHg), triceps skin fold thickness (mm), 2-hour serum insulin (mu
U/ml), body mass index (weight in kg/(height in m2)), diabetes pedigree function,
age (years) and a test whether the patient showed signs of diabetes (coded zero if
negative, one if positive). The data may be obtained from UCI Repository of ma-
chine learning databases at archive.ics.uci.edu/ml.

Before doing anything else, one should find out the purpose of the study and
more about how the data were collected. However, let’s skip ahead to a look at the
data:

> data(pima, package="faraway")

> head(pima)

pregnant glucose diastolic triceps insulin bmi diabetes age test

1 6 148 72 35 0 33.6 0.627 50 1

2 1 85 66 29 0 26.6 0.351 31 0

3 8 183 64 0 0 23.3 0.672 32 1

4 1 89 66 23 94 28.1 0.167 21 0

5 0 137 40 35 168 43.1 2.288 33 1

6 5 116 74 0 0 25.6 0.201 30 0

The data(pima, package="faraway") makes the data available from the faraway
package. An alternative is to just type require(faraway) which makes all the data
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and functions specific to this book available. You do need to install this package first
as explained in Appendix A. If you get an error message about data not being found,
it may be that you have forgotten to install the package.

The command head(pima) prints out the first six lines of the data frame. This is
a good way to see what variables we have and what sort of values they take. You can
type pima to see the whole data frame but 768 lines may be more than you want to
examine.

We start with some numerical summaries:

> summary(pima)

pregnant glucose diastolic triceps

Min. : 0.00 Min. : 0 Min. : 0.0 Min. : 0.0

1st Qu.: 1.00 1st Qu.: 99 1st Qu.: 62.0 1st Qu.: 0.0

Median : 3.00 Median :117 Median : 72.0 Median :23.0

Mean : 3.85 Mean :121 Mean : 69.1 Mean :20.5

3rd Qu.: 6.00 3rd Qu.:140 3rd Qu.: 80.0 3rd Qu.:32.0

Max. :17.00 Max. :199 Max. :122.0 Max. :99.0

insulin bmi diabetes age

Min. : 0.0 Min. : 0.0 Min. :0.078 Min. :21.0

1st Qu.: 0.0 1st Qu.:27.3 1st Qu.:0.244 1st Qu.:24.0

Median : 30.5 Median :32.0 Median :0.372 Median :29.0

Mean : 79.8 Mean :32.0 Mean :0.472 Mean :33.2

3rd Qu.:127.2 3rd Qu.:36.6 3rd Qu.:0.626 3rd Qu.:41.0

Max. :846.0 Max. :67.1 Max. :2.420 Max. :81.0

test

Min. :0.000

1st Qu.:0.000

Median :0.000

Mean :0.349

3rd Qu.:1.000

Max. :1.000

The summary() command is a quick way to get the usual univariate summary infor-
mation. At this stage, we are looking for anything unusual or unexpected, perhaps
indicating a data-entry error. For this purpose, a close look at the minimum and
maximum values of each variable is worthwhile. Starting with pregnant, we see a
maximum value of 17. This is large, but not impossible. However, we then see that
the next five variables have minimum values of zero. No blood pressure is not good
for the health — something must be wrong. Let’s look at the sorted values:

> sort(pima$diastolic)

[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[17] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[33] 0 0 0 24 30 30 38 40 44 44 44 44 46 46 48 48

...etc...

We see that the first 35 values are zero. The description that comes with the data says
nothing about it but it seems likely that the zero has been used as a missing value
code. For one reason or another, the researchers did not obtain the blood pressures
of 35 patients. In a real investigation, one would likely be able to question the re-
searchers about what really happened. Nevertheless, this does illustrate the kind of
misunderstanding that can easily occur. A careless statistician might overlook these
presumed missing values and complete an analysis assuming that these were real ob-
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served zeros. If the error was later discovered, they might then blame the researchers
for using zero as a missing value code (not a good choice since it is a valid value for
some of the variables) and not mentioning it in their data description. Unfortunately
such oversights are not uncommon, particularly with datasets of any size or complex-
ity. The statistician bears some share of responsibility for spotting these mistakes.

We set all zero values of the five variables to NA which is the missing value code
used by R:

> pima$diastolic[pima$diastolic == 0] <- NA

> pima$glucose[pima$glucose == 0] <- NA

> pima$triceps[pima$triceps == 0] <- NA

> pima$insulin[pima$insulin == 0] <- NA

> pima$bmi[pima$bmi == 0] <- NA

The variable test is not quantitative but categorical. Such variables are also called
factors. However, because of the numerical coding, this variable has been treated as
if it were quantitative. It is best to designate such variables as factors so that they
are treated appropriately. Sometimes people forget this and compute stupid statistics
such as the “average zip code.”

> pima$test <- factor(pima$test)

> summary(pima$test)

0 1

500 268

We now see that 500 cases were negative and 268 were positive. It is even better to
use descriptive labels:

> levels(pima$test) <- c("negative","positive")

> summary(pima)

pregnant glucose diastolic triceps

Min. : 0.000 Min. : 44.0 Min. : 24.0 Min. : 7.00

1st Qu.: 1.000 1st Qu.: 99.0 1st Qu.: 64.0 1st Qu.: 22.00

Median : 3.000 Median :117.0 Median : 72.0 Median : 29.00

Mean : 3.845 Mean :121.7 Mean : 72.4 Mean : 29.15

3rd Qu.: 6.000 3rd Qu.:141.0 3rd Qu.: 80.0 3rd Qu.: 36.00

Max. :17.000 Max. :199.0 Max. :122.0 Max. : 99.00

NA’s : 5.0 NA’s : 35.0 NA’s :227.00

insulin bmi diabetes age

Min. : 14.00 Min. :18.20 Min. :0.0780 Min. :21.00

1st Qu.: 76.25 1st Qu.:27.50 1st Qu.:0.2437 1st Qu.:24.00

Median :125.00 Median :32.30 Median :0.3725 Median :29.00

Mean :155.55 Mean :32.46 Mean :0.4719 Mean :33.24

3rd Qu.:190.00 3rd Qu.:36.60 3rd Qu.:0.6262 3rd Qu.:41.00

Max. :846.00 Max. :67.10 Max. :2.4200 Max. :81.00

NA’s :374.00 NA’s :11.00

test

negative:500

positive:268

Now that we have cleared up the missing values and coded the data appropriately,
we are ready to do some plots. Perhaps the most well-known univariate plot is the
histogram:
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Figure 1.1 The first panel shows a histogram of the diastolic blood pressures, the
second shows a kernel density estimate of the same, while the third shows an index
plot of the sorted values.

> hist(pima$diastolic,xlab="Diastolic",main="")

as seen in the first panel of Figure 1.1. We see a bell-shaped distribution for the di-
astolic blood pressures centered around 70. The construction of a histogram requires
the specification of the number of bins and their spacing on the horizontal axis. Some
choices can lead to histograms that obscure some features of the data. R specifies the
number and spacing of bins given the size and distribution of the data, but this choice
is not foolproof and misleading histograms are possible. For this reason, some pre-
fer to use kernel density estimates, which are essentially a smoothed version of the
histogram (see Simonoff (1996) for a discussion of the relative merits of histograms
and kernel estimates):

> plot(density(pima$diastolic,na.rm=TRUE),main="")

The kernel estimate may be seen in the second panel of Figure 1.1. We see that
this plot avoids the distracting blockiness of the histogram. Another alternative is to
simply plot the sorted data against its index:

> plot(sort(pima$diastolic),ylab="Sorted Diastolic")

The advantage of this is that we can see all the cases individually. We can see the
distribution and possible outliers. We can also see the discreteness in the measure-
ment of blood pressure — values are rounded to the nearest even number and hence
we see the “steps” in the plot.

Now we show a couple of bivariate plots, as seen in Figure 1.2:

> plot(diabetes ~ diastolic,pima)

> plot(diabetes ~ test,pima)

First, we see the standard scatterplot showing two quantitative variables. Second,
we see a side-by-side boxplot suitable for showing a quantitative with a qualitative
variable.

The base graphics system in R is fine for producing standard plots. A useful
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Figure 1.2 The first panel shows scatterplot of the diastolic blood pressures against
diabetes function and the second shows boxplots of diastolic blood pressure broken
down by test result.

alternative is provided by the ggplot2 package which you will need to install as
described in Appendix A. Here’s how we can produce versions of the same plots:

> require(ggplot2)

> ggplot(pima,aes(x=diastolic))+geom_histogram()

> ggplot(pima,aes(x=diastolic))+geom_density()

> ggplot(pima,aes(x=diastolic,y=diabetes))+geom_point()

In each case, the first part of the command specifies where the data comes from (the
data frame is pima) and an aesthetic using aes. The aesthetic specifies what you see
such as position in the x or y direction or aspects such as shape or color. The second
part of the command in each case is specifying the particular geometry for the plot.
The results are shown in Figure 1.3. The relative advantage of ggplot2 is more
apparent in producing more complex plots involving more than just two variables.
For example, we show two different ways that the varying test can be shown in the
relationship between diastolic and diabetes:

> ggplot(pima,aes(x=diastolic,y=diabetes,shape=test))+geom_point()+

theme(legend.position = "top", legend.direction = "horizontal")

> ggplot(pima,aes(x=diastolic,y=diabetes)) + geom_point(size=1) +

facet_grid(~ test)

Notice how the first plot, shown in Figure 1.4, has a third element. A theme specify-
ing an option regarding the appearance of the plot. In this case, we specify where the
legend should appear. The second plot uses two panels. Sometimes this is the better
option when crowded plots make different symbols hard to distinguish. I have also
reduced the point size in the second plot to make this easier. Full details can be seen
in Wickham (2009).
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Figure 1.3 Plots of the pima data using ggplot2.
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Figure 1.4 Two ways of a distinguishing a factor variable in a bivariate scatter plot.

Good graphics are vital in data analysis. They help you avoid mistakes and sug-
gest the form of the modeling to come. They are also important in communicating
your analysis to others. Many in your audience or readership will focus on the graphs.
This is your best opportunity to get your message over clearly and without misunder-
standing. In some cases, the graphics can be so convincing that the formal analysis
becomes just a confirmation of what has already been seen.

1.3 When to Use Linear Modeling

Linear modeling is used for explaining or modeling the relationship between a single
variable Y , called the response, outcome, output or dependent variable; and one or
more predictor, input, independent or explanatory variables, X1, . . . ,Xp, where p is
the number of predictors. We recommend you avoid using the words independent
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and dependent variables for X and Y as these are easily confused with the broader
meanings of terms. Regression analysis is another term used for linear modeling
although regressions can also be nonlinear.

When p = 1, it is called simple regression but when p > 1 it is called multiple

regression or sometimes multivariate regression. When there is more than one re-
sponse, then it is called multivariate multiple regression or sometimes (confusingly)
multivariate regression. We will not cover this in this book, although you can just do
separate regressions on each Y .

The response must be a continuous variable, but the explanatory variables can
be continuous, discrete or categorical, although we leave the handling of categorical
explanatory variables to later in the book. Taking the example presented above, a
regression with diastolic and bmi as Xs and diabetes as Y would be a multiple
regression involving only quantitative variables which we tackle first. A regression
with diastolic and test as Xs and bmi as Y would have one predictor that is
quantitative and one that is qualitative, which we will consider later in Chapter 14 on
analysis of covariance. A regression with test as X and diastolic as Y involves
just qualitative predictors — a topic called analysis of variance (ANOVA), although
this would just be a simple two sample situation. A regression of test as Y on
diastolic and bmi as predictors would involve a qualitative response. A logistic

regression could be used, but this will not be covered in this book.

Regression analyses have two main objectives:

1. Prediction of future or unseen responses given specified values of the predictors.

2. Assessment of the effect of, or relationship between, explanatory variables and
the response. We would like to infer causal relationships if possible.

You should be clear on the objective for the given data because some aspects of the
resulting analysis may differ. Regression modeling can also be used in a descriptive
manner to summarize the relationships between the variables. However, most end
users of data have more specific questions in mind and want to direct the analysis
toward a particular set of goals.

It is rare, except in a few cases in the precise physical sciences, to know (or even
suspect) the true model. In most applications, the model is an empirical construct
designed to answer questions about prediction or causation. It is usually not helpful
to think of regression analysis as the search for some true model. The model is a
means to an end, not an end in itself.

1.4 History

In the 18th century, accurate navigation was a difficult problem of commercial and
military interest. Although, it is relatively easy to determine latitude from Polaris,
also known as the North Star, finding longitude then was difficult. Various attempts
were made to devise a method using astronomy. Contrary to popular supposition,
the Moon does not always show the same face and moves such that about 60% of its
surface is visible at some time.

Tobias Mayer collected data on the locations of various landmarks on Moon,
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including the Manilius crater, as they moved relative to the earth. He derived an
equation describing the motion of the moon (called libration) taking the form:

arc= β+αsinang+ γcosang

He wished to obtain values for the three unknowns α,β and γ. The variables arc,
sinang and cosang can be observed using a telescope. A full explanation of the story
behind the data and the derivation of the equation can be found in Stigler (1986).

Since there are three unknowns, we need only three distinct observations of the
set of three variables to find a unique solution for α,β and γ. Embarassingly for
Mayer, there were 27 sets of observations available. Astronomical measurements
were naturally subject to some variation and so there was no solution that fit all 27
observations. Let’s take a look at the first few lines of the data:

> data(manilius, package="faraway")

> head(manilius)

arc sinang cosang group

1 13.167 0.8836 -0.4682 1

2 13.133 0.9996 -0.0282 1

3 13.200 0.9899 0.1421 1

4 14.250 0.2221 0.9750 3

5 14.700 0.0006 1.0000 3

6 13.017 0.9308 -0.3654 1

Mayer’s solution was to divide the data into three groups so that observations within
each group were similar in some respect. He then computed the sum of the variables
within each group. We can also do this:

> (moon3 <- aggregate(manilius[,1:3],list(manilius$group), sum))

Group.1 arc sinang cosang

1 1 118.13 8.4987 -0.7932

2 2 140.28 -6.1404 1.7443

3 3 127.53 2.9777 7.9649

Now there are just three equations in three unknowns to be solved. The solution is:

> solve(cbind(9,moon3$sinang,moon3$cosang), moon3$arc)

[1] 14.54459 -1.48982 0.13413

Hence the computed values of α,β and γ are -1.49, 14.5 and 0.134 respectively. One
might question how Mayer selected his three groups, but this solution does not seem
unreasonable.

Similar problems with more linear equations than unknowns continued to arise
until 1805, when Adrien Marie Legendre published the method of least squares. Sup-
pose we recognize that the equation is not exact and introduce an error term, ε:

arci = β+αsinangi + γcosangi + εi

where i = 1, . . . ,27. Now we find α,β and γ that minimize the sum of the squared
errors: ∑ε2. We will investigate this in much greater detail in the chapter to follow
but for now we simply present the solution using R:
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> lmod <- lm(arc ~ sinang + cosang, manilius)

> coef(lmod)

(Intercept) sinang cosang

14.561624 -1.504581 0.091365

We observe that this solution is quite similar to Mayer’s. The least squares solu-
tion is more satisfactory in that it requires no arbitrary division into groups. Carl
Friedrich Gauss claimed to have devised the method of least squares earlier but with-
out publishing it. At any rate, he did publish in 1809 showing that the method of
least squares was, in some sense, optimal.

For many years, the method of least squares was confined to the physical sciences
where it was used to resolve problems of overdetermined linear equations. The equa-
tions were derived from theory and least squares was used as a method to fit data to
these equations to estimate coefficients like α,β and γ above. It was not until later in
the 19th century that linear equations (or models) were suggested empirically from
the data rather than from theories of physical science. This opened up the field to the
social and life sciences.

Francis Galton, a nephew of Charles Darwin, was important in this extension of
statistics into social science. He coined the term regression to mediocrity in 1875
from which the rather peculiar term regression derives. Let’s see how this terminol-
ogy arose by looking at one of the datasets he collected at the time on the heights of
parents and children in Galton (1886). We load the HistData package of historical
statistical datasets and plot some of the data as seen in Figure 1.5. You will need to
install this package using install.packages("HistData") if you have not already
done so.

> data(GaltonFamilies, package="HistData")

> plot(childHeight ~ midparentHeight, GaltonFamilies)

We see that midparentHeight, defined as the father’s height plus 1.08 times the
mother’s height divided by two, is correlated with the childHeight, both in inches.
Now we might propose a linear relationship between the two of the form:

childHeight= α+βmidparentHeight+ ε

We can estimate α and β using R and plot the resulting fit as follows:

> lmod <- lm(childHeight ~ midparentHeight, GaltonFamilies)

> coef(lmod)

(Intercept) midparentHeight

22.63624 0.63736

> abline(lmod)

For the simple case of a response y and a single predictor x, we can write the equation
in the form:

y− ȳ

SDy
= r

(x− x̄)

SDx

where r is the correlation between x and y. The equation can be expressed in words
as: the response in standard units is the correlation times the predictor in standard
units. We can verify that this produces the same results as above by rearranging the
equation in the form y = α+βx and computing the estimates:
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Figure 1.5 The height of child is plotted against a combined parental height defined
as (father’s height + 1.08 × mother’s height)/2.

> (beta <- with(GaltonFamilies, cor(midparentHeight, childHeight) * sd

(childHeight) / sd(midparentHeight)))

[1] 0.63736

> (alpha <- with(GaltonFamilies, mean(childHeight) - beta * mean(

midparentHeight)))

[1] 22.636

Now one might naively expect that a child with parents who are, for example, one
standard deviation above average in height, to also be one standard deviation above
average in height, give or take. The supposition would set r = 1 in the equation and
leads to a line which we compute and plot below:

> (beta1 <- with(GaltonFamilies, sd(childHeight) / sd(midparentHeight)

))

[1] 1.9859

> (alpha1 <- with(GaltonFamilies, mean(childHeight) - beta1 * mean(

midparentHeight)))

[1] -70.689

> abline(alpha1, beta1, lty=2)

The resulting dashed line is added to Figure 1.5. The lines cross at the point of the
averages. We can see that a child of tall parents is predicted by the least squares
line to have a height which is above average but not quite as tall as the parents as
the dashed line would have you believe. Similarly children of below average height
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parents are predicted to have a height which is still below average but not quite as
short as the parents. This is why Galton used the phrase “regression to mediocrity”
and the phenomenom is sometimes called the regression effect.

This applies to any (x,y) situation like this. For example, in sports, an athlete
may have a spectacular first season only to do not quite as well in the second season.
Sports writers come up with all kinds of explanations for this but the regression effect
is likely to be the unexciting cause. In the parents and children example, although it
does predict that successive descendants in the family will come closer to the mean,
it does not imply the same of the population in general since random fluctuations will
maintain the variation, so no need to get too pessimistic about mediocrity! In many
other applications of linear modeling, the regression effect is not of interest because
different types of variables are measured. Unfortunately, we are now stuck with the
rather gloomy word of regression thanks to Galton.

Regression methodology developed rapidly with the advent of high-speed com-
puting. Just fitting a regression model used to require extensive hand calculation. As
computing hardware has improved, the scope for analysis has widened. This has led
to an extensive development in the methodology and the scale of problems that can
be tackled.

Exercises

1. The dataset teengamb concerns a study of teenage gambling in Britain. Make a
numerical and graphical summary of the data, commenting on any features that
you find interesting. Limit the output you present to a quantity that a busy reader
would find sufficient to get a basic understanding of the data.

2. The dataset uswages is drawn as a sample from the Current Population Survey
in 1988. Make a numerical and graphical summary of the data as in the previous
question.

3. The dataset prostate is from a study on 97 men with prostate cancer who were
due to receive a radical prostatectomy. Make a numerical and graphical summary
of the data as in the first question.

4. The dataset sat comes from a study entitled “Getting What You Pay For: The De-
bate Over Equity in Public School Expenditures.” Make a numerical and graphical
summary of the data as in the first question.

5. The dataset divusa contains data on divorces in the United States from 1920 to
1996. Make a numerical and graphical summary of the data as in the first question.



Chapter 2

Estimation

2.1 Linear Model

Let’s start by defining what is meant by a linear model. Suppose we want to model
the response Y in terms of three predictors, X1, X2 and X3. One very general form for
the model would be:

Y = f (X1,X2,X3)+ ε

where f is some unknown function and ε is the error in this representation. ε is
additive in this instance, but could enter in some even more general form. Still, if we
assume that f is a smooth, continuous function, that still leaves a very wide range
of possibilities. Even with just three predictors, we typically will not have enough
data to try to estimate f directly. So we usually have to assume that it has some more
restricted form, perhaps linear as in:

Y = β0 +β1X1 +β2X2 +β3X3 + ε

where βi, i = 0,1,2,3 are unknown parameters. Unfortunately this term is subject to
some confusion as engineers often use the term parameter for what statisticians call
the variables, Y , X1 and so on. β0 is called the intercept term.

Thus the problem is reduced to the estimation of four parameters rather than
the infinite dimensional f . In a linear model the parameters enter linearly — the
predictors themselves do not have to be linear. For example:

Y = β0 +β1X1 +β2 logX2 +β3X1X2 + ε

is a linear model, but:

Y = β0 +β1X
β2
1 + ε

is not. Some relationships can be transformed to linearity — for example, y = β0x
β
1ε

can be linearized by taking logs. Linear models seem rather restrictive, but because
the predictors can be transformed and combined in any way, they are actually very
flexible. The term linear is often used in everyday speech as almost a synonym
for simplicity. This gives the casual observer the impression that linear models can
only handle small simple datasets. This is far from the truth — linear models can
easily be expanded and modified to handle complex datasets. Linear is also used to
refer to straight lines, but linear models can be curved. Truly nonlinear models are
rarely absolutely necessary and most often arise from a theory about the relationships
between the variables, rather than an empirical investigation.

Where do models come from? We distinguish several different sources:

13
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1. Physical theory may suggest a model. For example, Hooke’s law says that the
extension of a spring is proportional to the weight attached. Models like these
usually arise in the physical sciences and engineering.

2. Experience with past data. Similar data used in the past were modeled in a partic-
ular way. It is natural to see whether the same model will work with the current
data. Models like these usually arise in the social sciences.

3. No prior idea exists — the model comes from an exploration of the data. We use
skill and judgment to pick a model. Sometimes it does not work and we have to
try again.

Models that derive directly from physical theory are relatively uncommon so that
usually the linear model can only be regarded as an approximation to a complex real-
ity. We hope it predicts well or explains relationships usefully but usually we do not
believe it is exactly true. A good model is like a map that guides us to our destination.
For the rest of this chapter, we will stay in the special world of Mathematics where
all models are true.

2.2 Matrix Representation

We want a general solution to estimating the parameters of a linear model. We can
find simple formulae for some special cases but to devise a method that will work in
all cases, we need to use matrix algebra. Let’s see how this can be done.

We start with some data where we have a response Y and, say, three predictors,
X1, X2 and X3. The data might be presented in tabular form like this:

y1 x11 x12 x13

y2 x21 x22 x23

. . . . . .
yn xn1 xn2 xn3

where n is the number of observations, or cases, in the dataset.
Given the actual data values, we may write the model as:

yi = β0 +β1xi1 +β2xi2 +β3xi3 + εi i = 1, . . . ,n.

It will be more convenient to put this in a matrix/vector representation. The regres-
sion equation is then written as:

y = Xβ+ ε

where y = (y1, . . . ,yn)T , ε = (ε1, . . . ,εn)T , β = (β0, . . . ,β3)T and:

X =

⎛

⎜
⎜
⎝

1 x11 x12 x13

1 x21 x22 x23

. . . . . .
1 xn1 xn2 xn3

⎞

⎟
⎟
⎠
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The column of ones incorporates the intercept term. One simple example is the null

model where there is no predictor and just a mean y = µ+ ε:

⎛

⎝

y1

. . .
yn

⎞

⎠=

⎛

⎝

1
. . .
1

⎞

⎠µ+

⎛

⎝

ε1

. . .
εn

⎞

⎠

We can assume that Eε = 0 since if this were not so, we could simply absorb the
nonzero expectation for the error into the mean µ to get a zero expectation.

2.3 Estimating β

The regression model, y = Xβ+ ε, partitions the response into a systematic compo-
nent Xβ and a random component ε. We would like to choose β so that the systematic
part explains as much of the response as possible. Geometrically speaking, the re-
sponse lies in an n-dimensional space, that is, y ∈ IRn while β ∈ IRp where p is the
number of parameters. If we include the intercept then p is the number of predictors
plus one. It is easy to get confused as to whether p is the number of predictors or
parameters, as different authors use different conventions, so be careful.

The problem is to find β so that Xβ is as close to Y as possible. The best choice,
the estimate β̂, is apparent in the geometrical representation seen in Figure 2.1. β̂
is, in this sense, the best estimate of β within the model space. The β̂ values are
sometimes called the regression coefficients. The response predicted by the model
is ŷ = X β̂ or Hy where H is an orthogonal projection matrix. The ŷ are called pre-

dicted or fitted values. The difference between the actual response and the predicted
response is denoted by ε̂ and is called the residual. .

ŷ

y

ε̂

Space spanned by X

Figure 2.1 Geometrical representation of the estimation β. The data vector Y is
projected orthogonally onto the model space spanned by X . The fit is represented by
projection ŷ = X β̂ with the difference between the fit and the data represented by the
residual vector ε̂.

The conceptual purpose of the model is to represent, as accurately as possible,
something complex, y, which is n-dimensional, in terms of something much simpler,
the model, which is p-dimensional. Thus if our model is successful, the structure in
the data should be captured in those p dimensions, leaving just random variation in
the residuals which lie in an (n− p)-dimensional space. We have:
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Data = Systematic Structure + Random Variation

n dimensions = p dimensions + (n− p) dimensions

2.4 Least Squares Estimation

The estimation of β can also be considered from a nongeometric point of view. We
define the best estimate of β as the one which minimizes the sum of the squared
errors:

∑ε2
i = εT ε = (y−Xβ)T (y−Xβ)

Differentiating with respect to β and setting to zero, we find that β̂ satisfies:

XT X β̂ = XT y

These are called the normal equations. We can derive the same result using the
geometric approach. Now provided XT X is invertible:

β̂ = (XT X)−1XT y

X β̂ = X(XT X)−1XT y

ŷ = Hy

H = X(XT X)−1XT is called the hat matrix and is the orthogonal projection of y

onto the space spanned by X . H is useful for theoretical manipulations, but you
usually do not want to compute it explicitly, as it is an n× n matrix which could be
uncomfortably large for some datasets. The following useful quantities can now be
represented using H.

The predicted or fitted values are ŷ = Hy = X β̂ while the residuals are ε̂ =
y− X β̂ = y− ŷ = (I −H)y. The residual sum of squares (RSS) is ε̂T ε̂ = yT (I −
H)T (I −H)y = yT (I −H)y.

Later, we will show that the least squares estimate is the best possible estimate of
β when the errors ε are uncorrelated and have equal variance, i.e., var ε = σ2I. β̂ is
unbiased and has variance (XT X)−1σ2 provided var ε = σ2I. Since β̂ is a vector, its
variance is a matrix.

We also need to estimate σ2. We find that E ε̂T ε̂ = σ2(n− p), which suggests the
estimator:

σ̂2 =
ε̂T ε̂

n− p
=

RSS

n− p

as an unbiased estimate of σ2. n− p is called the degrees of freedom of the model.
Sometimes you need the standard error for a particular component of β̂ which can be

picked out as se(β̂i−1) =
√

(XT X)−1
ii σ̂.
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2.5 Examples of Calculating β̂

In a few simple models, it is possible to derive explicit formulae for β̂:

1. When y = µ+ ε, X = 1 and β = µ hence XT X = 1T 1 = n so:

β̂ = (XT X)−1XT y =
1

n
1T y = ȳ

2. Simple linear regression (one predictor):

yi = β0 +β1xi + εi

⎛

⎝

y1

. . .
yn

⎞

⎠=

⎛

⎝

1 x1

. . .
1 xn

⎞

⎠

(

β0

β1

)

+

⎛

⎝

ε1

. . .
εn

⎞

⎠

We can now apply the formula but a simpler approach is to rewrite the equation
as:

yi =

β′0
︷ ︸︸ ︷

β0 +β1x̄+β1(xi − x̄)+ εi

so now:

X =

⎛

⎝

1 x1 − x̄

. . .
1 xn − x̄

⎞

⎠ XT X =

(

n 0
0 ∑n

i=1(xi − x̄)2

)

Next work through the rest of the calculation to reconstruct the familiar estimate, that
is:

β̂1 =
∑(xi − x̄)yi

∑(xi − x̄)2

In higher dimensions, it is usually not possible to find such explicit formulae for the
parameter estimates unless XT X happens to be a simple form. So typically we need
computers to fit such models. Regression has a long history, so in the time before
computers became readily available, fitting even quite simple models was a tedious
time consuming task. When computing was expensive, data analysis was limited.
It was designed to keep calculations to a minimum and restrict the number of plots.
This mindset remained in statistical practice for some time even after computing
became widely and cheaply available. Now it is a simple matter to fit a multitude of
models and make more plots than one could reasonably study. The challenge now for
the analyst is to choose among these intelligently to extract the crucial information
in the data.

2.6 Example

Now let’s look at an example concerning the number of species found on the various
Galápagos Islands. There are 30 cases (Islands) and seven variables in the dataset.
We start by reading the data into R and examining it:
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> data(gala, package="faraway")

> head(gala[,-2])

Species Area Elevation Nearest Scruz Adjacent

Baltra 58 25.09 346 0.6 0.6 1.84

Bartolome 31 1.24 109 0.6 26.3 572.33

Caldwell 3 0.21 114 2.8 58.7 0.78

Champion 25 0.10 46 1.9 47.4 0.18

Coamano 2 0.05 77 1.9 1.9 903.82

Daphne.Major 18 0.34 119 8.0 8.0 1.84

The variables are Species — the number of species found on the island, Area
— the area of the island (km2), Elevation — the highest elevation of the island (m),
Nearest — the distance from the nearest island (km), Scruz — the distance from
Santa Cruz Island (km), Adjacent — the area of the adjacent island (km2). We have
omitted the second column (which has the number of endemic species) because we
shall not use this alternative response variable in this analysis.

The data were presented by Johnson and Raven (1973) and also appear in Weis-
berg (1985). I have filled in some missing values for simplicity (see Chapter 13 for
how this can be done). Fitting a linear model in R is done using the lm() com-
mand. Notice the syntax for specifying the predictors in the model. This is part of
the Wilkinson–Rogers notation. In this case, since all the variables are in the gala
data frame, we must use the data= argument:

> lmod <- lm(Species ~ Area + Elevation + Nearest + Scruz + Adjacent,

data=gala)

> summary(lmod)

Call:

lm(formula = Species ~ Area + Elevation + Nearest + Scruz +

Adjacent , data = gala)

Residuals:

Min 1Q Median 3Q Max

-111.68 -34.90 -7.86 33.46 182.58

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.06822 19.15420 0.37 0.7154

Area -0.02394 0.02242 -1.07 0.2963

Elevation 0.31946 0.05366 5.95 0.0000038 ***

Nearest 0.00914 1.05414 0.01 0.9932

Scruz -0.24052 0.21540 -1.12 0.2752

Adjacent -0.07480 0.01770 -4.23 0.0003 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 61 on 24 degrees of freedom

Multiple R-squared: 0.766, Adjusted R-squared: 0.717

F-statistic: 15.7 on 5 and 24 DF, p-value: 6.84e-07

For my tastes, this output contains rather too much information. I have written an
alternative called sumary which produces a shorter version of this. Since we will be
looking at lot of regression output, the use of this version makes this book several
pages shorter. Of course, if you prefer the above, feel free to add the extra “m” in the
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function call. You will need to install and load my package if you want to use my
version:

> require(faraway)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.06822 19.15420 0.37 0.7154

Area -0.02394 0.02242 -1.07 0.2963

Elevation 0.31946 0.05366 5.95 0.0000038

Nearest 0.00914 1.05414 0.01 0.9932

Scruz -0.24052 0.21540 -1.12 0.2752

Adjacent -0.07480 0.01770 -4.23 0.0003

n = 30, p = 6, Residual SE = 60.975, R-Squared = 0.77

We can identify several useful quantities in this output. Other statistical packages
tend to produce output quite similar to this. One useful feature of R is that it is
possible to directly calculate quantities of interest. Of course, it is not necessary here
because the lm() function does the job, but it is very useful when the statistic you
want is not part of the prepackaged functions. First, we extract the X-matrix:

> x <- model.matrix( ~ Area + Elevation + Nearest + Scruz + Adjacent,

gala)

and here is the response y:

> y <- gala$Species

Now let’s construct (XT X)−1. t() does transpose and %*% does matrix multipli-
cation. solve(A) computes A−1 while solve(A,b) solves Ax = b:

> xtxi <- solve(t(x) %*% x)

We can get β̂ directly, using (XT X)−1XT y:

> xtxi %*% t(x) %*% y

[,1]

1 7.068221

Area -0.023938

Elevation 0.319465

Nearest 0.009144

Scruz -0.240524

Adjacent -0.074805

This is a very bad way to compute β̂. It is inefficient and can be very inaccurate
when the predictors are strongly correlated. Such problems are exacerbated by large
datasets. A better, but not perfect, way is:

> solve(crossprod(x,x),crossprod(x,y))

[,1]

1 7.068221

Area -0.023938

Elevation 0.319465

Nearest 0.009144

Scruz -0.240524

Adjacent -0.074805
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where crossprod(x,y) computes xT y. Here we get the same result as lm() be-
cause the data are well-behaved. In the long run, you are advised to use carefully
programmed code such as found in lm() which uses the QR decomposition. To see
more details, consult a text such as Thisted (1988) or read Section 2.7.

We can extract the regression quantities we need from the model object. Com-
monly used are residuals(), fitted(), df.residual() which gives the degrees
of freedom, deviance() which gives the RSS and coef() which gives the β̂. You
can also extract other needed quantities by examining the model object and its sum-
mary:

> names(lmod)

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms" "model"

> lmodsum <- summary(lmod)

> names(lmodsum)

[1] "call" "terms" "residuals" "coefficients"

[5] "aliased" "sigma" "df" "r.squared"

[9] "adj.r.squared" "fstatistic" "cov.unscaled"

We can estimate σ using the formula in the text above or extract it from the summary
object:

> sqrt(deviance(lmod)/df.residual(lmod))

[1] 60.975

> lmodsum$sigma

[1] 60.975

We can also extract (XT X)−1 and use it to compute the standard errors for the coef-
ficients. (diag() returns the diagonal of a matrix):

> xtxi <- lmodsum$cov.unscaled

> sqrt(diag(xtxi))*60.975

(Intercept) Area Elevation Nearest Scruz

19.154139 0.022422 0.053663 1.054133 0.215402

Adjacent

0.017700

or get them from the summary object:

> lmodsum$coef[,2]

(Intercept) Area Elevation Nearest Scruz

19.154198 0.022422 0.053663 1.054136 0.215402

Adjacent

0.017700

2.7 QR Decomposition

This section might be skipped unless you are interested in the actual calculation of β̂
and related quantities. Any design matrix X can be written as:

X = Q

(

R

0

)

= Q f R
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where Q is an n×n orthogonal matrix, that is QT Q = QQT = I and R is a p× p upper
triangular matrix (Ri j = 0 for i > j). The 0 is an (n− p)× p matrix of zeroes while
Q f is the first p columns of Q.

The RSS = (y−Xβ)T (y−Xβ) = ∥y−Zβ∥2 where ∥ ·∥ is the Euclidean length of
a vector. The matrix Q represents a rotation and does not change length. Hence:

RSS = ∥QT y−QT Xβ∥2 =

∥
∥
∥
∥

(

f

r

)

−
(

R

0

)∥
∥
∥
∥

2

where

(

f

r

)

= QT y for vector f of length p and vector r of length n− p. From this

we see:

RSS = ∥ f −Rβ∥2 +∥r∥2

which can be minimized by setting β so that Rβ = f .

Let’s see how this works for the Galápagos data. First we compute the QR de-
composition:

> qrx <- qr(x)

The components of the decomposition must be extracted by other functions. For
example, we can extract the Q matrix using qr.Q:

> dim(qr.Q(qrx))

[1] 30 6

Notice that we do not need the whole n× n matrix for the computation. The first p

columns suffice so qr.q returns what we call Q f . We can compute f :

> (f <- t(qr.Q(qrx)) %*% y)

[,1]

[1,] -466.8422

[2,] 381.4056

[3,] 256.2505

[4,] 5.4076

[5,] -119.4983

[6,] 257.6944

Solving Rβ = f is easy because of the triangular form of R. We use the method of
backsubstitution:

> backsolve(qr.R(qrx),f)

[,1]

[1,] 7.068221

[2,] -0.023938

[3,] 0.319465

[4,] 0.009144

[5,] -0.240524

[6,] -0.074805

where the results match those seen previously.
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2.8 Gauss–Markov Theorem

β̂ is a plausible estimator, but there are alternatives. Nonetheless, there are three good
reasons to use least squares:

1. It results from an orthogonal projection onto the model space. It makes sense
geometrically.

2. If the errors are independent and identically normally distributed, it is the maxi-
mum likelihood estimator. Loosely put, the maximum likelihood estimate is the
value of β that maximizes the probability of the data that was observed.

3. The Gauss–Markov theorem states that β̂ is the best linear unbiased estimate
(BLUE).

To understand the Gauss–Markov theorem we first need to understand the concept of
an estimable function. A linear combination of the parameters ψ = cT β is estimable
if and only if there exists a linear combination aT y such that:

EaT y = cT β ∀β

Estimable functions include predictions of future observations, which explains why
they are well worth considering. If X is of full rank, then all linear combinations are
estimable.

Suppose Eε = 0 and var ε = σ2I. Suppose also that the structural part of the
model, EY =Xβ is correct. (Clearly these are big assumptions and so we will address
the implications of this later.) Let ψ = cT β be an estimable function; then the Gauss–
Markov theorem states that in the class of all unbiased linear estimates of ψ, ψ̂ = cT β̂
has the minimum variance and is unique.

We prove this theorem. Suppose aT y is some unbiased estimate of cT β so that:

EaT y = cT β ∀β

aT Xβ = cT β ∀β

which means that aT X = cT . This implies that c must be in the range space of XT

which in turn implies that c is also in the range space of XT X which means there
exists a λ such that c = XT Xλ so:

cT β̂ = λT XT X β̂ = λT XT y

Now we can show that the least squares estimator has the minimum variance — pick
an arbitrary estimate aT y and compute its variance:

var (aT y) = var (aT y− cT β̂+ cT β̂)

= var (aT y−λT XT y+ cT β̂)

= var (aT y−λT XT y)+var (cT β̂)+2cov(aT y−λT XT y,λT XT y)

but

cov(aT y−λT XT y,λT XT y) = (aT −λT XT )σ2IXλ

= (aT X −λT XT X)σ2Iλ

= (cT − cT )σ2Iλ = 0
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so
var (aT y) = var (aT y−λT XT y)+var (cT β̂)

Now since variances cannot be negative, we see that:

var (aT y)≥ var (cT β̂)

In other words, cT β̂ has minimum variance. It now remains to show that it is unique.
There will be equality in the above relationship if var (aT y − λT XT y) = 0 which

would require that aT −λT XT = 0 which means that aT y = λT XT y = cT β̂. So equal-
ity occurs only if aT y = cT β̂ so the estimator is unique. This completes the proof.

The Gauss–Markov theorem shows that the least squares estimate β̂ is a good
choice, but it does require that the errors are uncorrelated and have equal variance.
Even if the errors behave, but are nonnormal, then nonlinear or biased estimates may
work better. So this theorem does not tell one to use least squares all the time; it just
strongly suggests it unless there is some strong reason to do otherwise. Situations
where estimators other than ordinary least squares should be considered are:

1. When the errors are correlated or have unequal variance, generalized least squares
should be used. See Section 8.1.

2. When the error distribution is long-tailed, then robust estimates might be used.
Robust estimates are typically not linear in y. See Section 8.4.

3. When the predictors are highly correlated (collinear), then biased estimators such
as ridge regression might be preferable. See Chapter 11.

2.9 Goodness of Fit

It is useful to have some measure of how well the model fits the data. One common
choice is R2, the so-called coefficient of determination or percentage of variance

explained:

R2 = 1− ∑(ŷi − yi)2

∑(yi − ȳ)2
= 1−

RSS

Total SS(Corrected for Mean)

Its range is 0 ≤ R2 ≤ 1 — values closer to 1 indicating better fits. For simple lin-
ear regression R2 = r2 where r is the correlation between x and y. An equivalent
definition is:

R2 =
∑(ŷi − ȳ)2

∑(yi − ȳ)2

or
R2 = cor2(ŷ,y)

The graphical intuition behind R2 is seen in Figure 2.2. Suppose you want to
predict y. If you do not know x, then your best prediction is ȳ, but the variability
in this prediction is high. If you do know x, then your prediction will be given
by the regression fit. This prediction will be less variable provided there is some
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Figure 2.2 When x is not known, the best predictor of y is ȳ and the variation is
denoted by the dotted line. When x is known, we can predict y more accurately by
the solid line. R2 is related to the ratio of these two variances.

relationship between x and y. R2 is one minus the ratio of the sum of squares for
these two predictions. Thus for perfect predictions the ratio will be zero and R2 will
be one.

Some care is necessary if there is no intercept in your model. The denominator
in the first definition of R2 has a null model with an intercept in mind when the
sum of squares is calculated. Unfortunately, R uses this definition and will give a
misleadingly high R2. If you must have an R2 use the cor2(ŷ,y) definition when there
is no intercept.

What is a good value of R2? It depends on the area of application. In the biolog-
ical and social sciences, variables tend to be more weakly correlated and there is a
lot of noise. We would expect lower values for R2 in these areas — a value of, say,
0.6 might be considered good. In physics and engineering, where most data come
from closely controlled experiments, we typically expect to get much higher R2s and
a value of 0.6 would be considered low. Some experience with the particular area is
necessary for you to judge your R2s well.

It is a mistake to rely on R2 as a sole measure of fit. In Figure 2.3, we see
some simulated datasets where the R2 is around 0.65 for a linear fit in all four cases.
The first plot on the upper left shows an ordinary relationship while on the right the
variation in x is smaller as is the residual variation. However, predictions (within
the range of x) would have less variation in the second case. On the lower left, the
fit looks good except for two outliers demonstrating how sensitive R2 is to a few
extreme values. On the lower right, we see that the true relationship is somewhat
quadratic which shows us that R2 doesn’t tell us much about whether we have the
right model.

An alternative measure of fit is σ̂. This quantity is directly related to the standard
errors of estimates of β and predictions. The advantage is that σ̂ is measured in the
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Figure 2.3 Four simulated datasets where R2 is about 0.65. The plot on the upper
left is well-behaved for R2. In the plot on the upper right, the residual variation is
smaller than the first plot but the variation in x is also smaller so R2 is about the same.
In the plot on the lower left, the fit looks strong except for a couple of outliers while
on the lower right, the relationship is quadratic.

units of the response and so may be directly interpreted in the context of the particular
dataset. This may also be a disadvantage in that one must understand the practical
significance of this measure whereas R2, being unitless, is easy to understand. The
R regression summary returns both values and it is worth paying attention to both of
them.
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2.10 Identifiability

The least squares estimate is the solution to the normal equations:

XT X β̂ = XT y

where X is an n× p matrix. If XT X is singular and cannot be inverted, then there
will be infinitely many solutions to the normal equations and β̂ is at least partially
unidentifiable. Unidentifiability will occur when X is not of full rank — that is
when its columns are linearly dependent. With observational data, unidentifiability
is usually caused by some oversight. Here are some examples:

1. A person’s weight is measured both in pounds and kilos and both variables are
entered into the model. One variable is just a multiple of the other.

2. For each individual we record the number of years of preuniversity education,
the number of years of university education and also the total number of years
of education and put all three variables into the model. There is an exact linear
relation among the variables.

3. We have more variables than cases, that is, p > n. When p = n, we may perhaps
estimate all the parameters, but with no degrees of freedom left to estimate any
standard errors or do any testing. Such a model is called saturated. When p > n,
then the model is sometimes called supersaturated. Such models are considered
in large-scale screening experiments used in product design and manufacture and
in bioinformatics where there are more genes than individuals tested, but there
is no hope of uniquely estimating all the parameters in such a model. Different
approaches are necessary.

Such problems can be avoided by paying attention. Identifiability is more of an
issue in designed experiments. Consider a simple two-sample experiment, where the
treatment observations are y1, . . . ,yn and the controls are yn+1, . . . ,ym+n. Suppose we
try to model the response by an overall mean µ and group effects α1 and α2:

y j = µ+αi + ε j i = 1,2 j = 1, . . . ,m+n
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

y1

. . .
yn

yn+1

. . .
ym+n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0
. . .

1 1 0
1 0 1
. . .
1 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎝

µ

α1

α2

⎞

⎠+

⎛

⎜
⎜
⎜
⎜
⎝

ε1

. . .

. . .

. . .
εm+n

⎞

⎟
⎟
⎟
⎟
⎠

Now although X has three columns, it has only rank two — (µ,α1,α2) are not
identifiable and the normal equations have infinitely many solutions. We can solve
this problem by imposing some constraints, µ = 0 or α1 +α2 = 0, for example.

Statistics packages handle nonidentifiability differently. In the regression case
above, some may return error messages and some may fit models because rounding
error may remove the exact identifiability. In other cases, constraints may be applied
but these may be different from what you expect. By default, R fits the largest iden-
tifiable model by removing variables in the reverse order of appearance in the model
formula.
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Here is an example. Suppose we create a new variable for the Galápagos dataset
— the difference in area between the island and its nearest neighbor:

> gala$Adiff <- gala$Area -gala$Adjacent

and add that to the model:

> lmod <- lm(Species ~ Area+Elevation+Nearest+Scruz+Adjacent +Adiff,

gala)

> sumary(lmod)

Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.06822 19.15420 0.37 0.7154

Area -0.02394 0.02242 -1.07 0.2963

Elevation 0.31946 0.05366 5.95 0.0000038

Nearest 0.00914 1.05414 0.01 0.9932

Scruz -0.24052 0.21540 -1.12 0.2752

Adjacent -0.07480 0.01770 -4.23 0.0003

n = 30, p = 6, Residual SE = 60.975, R-Squared = 0.77

We get a message about a singularity because the rank of the design matrix X

is six, which is less than its seven columns. In most cases, the cause of identifi-
ability can be revealed with some thought about the variables, but, failing that, an
eigendecomposition of XT X will reveal the linear combination(s) that gave rise to
the unidentifiability — see Section 11.1.

Lack of identifiability is obviously a problem, but it is usually easy to identify and
work around. More problematic are cases where we are close to unidentifiability. To
demonstrate this, suppose we add a small random perturbation to the third decimal
place of Adiff by adding a random variate from U [−0.005,0.005] where U denotes
the uniform distribution. Random numbers are by nature random so results are not
exactly reproducible. However, you can make the numbers come out the same every
time by setting the seed on the random number generator using set.seed(). I have
done this here so you will not wonder why your answers are not exactly the same as
mine, but it is not strictly necessary.

> set.seed(123)

> Adiffe <- gala$Adiff+0.001*(runif(30)-0.5)

and now refit the model:

> lmod <- lm(Species ~ Area+Elevation+Nearest+Scruz +Adjacent+Adiffe,

gala)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.2964 19.4341 0.17 0.87

Area -45122.9865 42583.3393 -1.06 0.30

Elevation 0.3130 0.0539 5.81 0.0000064

Nearest 0.3827 1.1090 0.35 0.73

Scruz -0.2620 0.2158 -1.21 0.24

Adjacent 45122.8891 42583.3406 1.06 0.30

Adiffe 45122.9613 42583.3381 1.06 0.30

n = 30, p = 7, Residual SE = 60.820, R-Squared = 0.78
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Notice that now all parameters are estimated, but the standard errors are very large
because we cannot estimate them in a stable way. We set up this problem so we know
the cause but in general we need to be able to identify such situations. We do this in
Section 7.3.

2.11 Orthogonality

Orthogonality is a useful property because it allows us to more easily interpret the
effect of one predictor without regard to another. Suppose we can partition X in two,
X = [X1|X2] such that XT

1 X2 = 0. So now:

Y = Xβ+ ε = X1β1 +X2β2 + ε

and

XT X =

(

XT
1 X1 XT

1 X2

XT
2 X1 XT

2 X2

)

=

(

XT
1 X1 0
0 XT

2 X2

)

which means:
β̂1 = (XT

1 X1)
−1XT

1 y β̂2 = (XT
2 X2)

−1XT
2 y

Notice that β̂1 will be the same regardless of whether X2 is in the model or not
(and vice versa). So we can interpret the effect of X1 without a concern for X2.
Unfortunately, the decoupling is not perfect. Suppose we wish to test H0 : β1 = 0.
We have RSS/d f = σ̂2 that will be different depending on whether X2 is included in
the model or not, but the difference in F is not liable to be as large as in nonorthogonal
cases.

If the covariance between vectors x1 and x2 is zero, then ∑ j(x j1− x̄1)(x j2− x̄2) =
0. This means that if we center the predictors, a covariance of zero implies or-
thogonality. As can be seen in the second example in Section 2.5, we can center
the predictors without essentially changing the model provided we have an intercept
term.

Orthogonality is a desirable property, but will only occur when X is chosen by the
experimenter. It is a feature of a good design. In observational data, we do not have
direct control over X and this is the source of many of the interpretational difficulties
associated with nonexperimental data.

Here is an example of an experiment to determine the effects of column tem-
perature, gas/liquid ratio and packing height in reducing the unpleasant odor of a
chemical product that was sold for household use. Read the data in and display:

> data(odor, package="faraway")

> odor

odor temp gas pack

1 66 -1 -1 0

2 39 1 -1 0

3 43 -1 1 0

4 49 1 1 0

5 58 -1 0 -1

6 17 1 0 -1

7 -5 -1 0 1

8 -40 1 0 1
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9 65 0 -1 -1

10 7 0 1 -1

11 43 0 -1 1

12 -22 0 1 1

13 -31 0 0 0

14 -35 0 0 0

15 -26 0 0 0

The three predictors have been transformed from their original scale of measurement,
for example, temp = (Fahrenheit-80)/40 so the original values of the predictor were
40, 80 and 120. The data is presented in John (1971) and give an example of a central

composite design. We compute the covariance of the predictors:

> cov(odor[,-1])

temp gas pack

temp 0.57143 0.00000 0.00000

gas 0.00000 0.57143 0.00000

pack 0.00000 0.00000 0.57143

The matrix is diagonal. Even if temp was measured in the original Fahrenheit scale,
the matrix would still be diagonal, but the entry in the matrix corresponding to temp

would change. Now fit a model, while asking for the correlation of the coefficients:

> lmod <- lm(odor ~ temp + gas + pack, odor)

> summary(lmod,cor=T)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 15.2 9.3 1.63 0.13

temp -12.1 12.7 -0.95 0.36

gas -17.0 12.7 -1.34 0.21

pack -21.4 12.7 -1.68 0.12

Residual standard error: 36 on 11 degrees of freedom

Multiple R-Squared: 0.334, Adjusted R-squared: 0.152

F-statistic: 1.84 on 3 and 11 DF, p-value: 0.199

Correlation of Coefficients:

(Intercept) temp gas

temp 0.00

gas 0.00 0.00

pack 0.00 0.00 0.00

We see that, as expected, the pairwise correlation of all the coefficients is zero. Notice
that the SEs for the coefficients are equal due to the balanced design. Now drop one
of the variables:

> lmod <- lm(odor ~ gas + pack, odor)

> summary(lmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 15.20 9.26 1.64 0.13

gas -17.00 12.68 -1.34 0.20

pack -21.37 12.68 -1.69 0.12

Residual standard error: 35.9 on 12 degrees of freedom

Multiple R-Squared: 0.279, Adjusted R-squared: 0.159

F-statistic: 2.32 on 2 and 12 DF, p-value: 0.141
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The coefficients themselves do not change, but the residual SE does change slightly,
which causes small changes in the SEs of the coefficients, t-statistics and p-values,
but nowhere near enough to change our qualitative conclusions.

Exercises

1. The dataset teengamb concerns a study of teenage gambling in Britain. Fit a
regression model with the expenditure on gambling as the response and the sex,
status, income and verbal score as predictors. Present the output.

(a) What percentage of variation in the response is explained by these predictors?

(b) Which observation has the largest (positive) residual? Give the case number.

(c) Compute the mean and median of the residuals.

(d) Compute the correlation of the residuals with the fitted values.

(e) Compute the correlation of the residuals with the income.

(f) For all other predictors held constant, what would be the difference in predicted
expenditure on gambling for a male compared to a female?

2. The dataset uswages is drawn as a sample from the Current Population Survey in
1988. Fit a model with weekly wages as the response and years of education and
experience as predictors. Report and give a simple interpretation to the regression
coefficient for years of education. Now fit the same model but with logged weekly
wages. Give an interpretation to the regression coefficient for years of education.
Which interpretation is more natural?

3. In this question, we investigate the relative merits of methods for computing the
coefficients. Generate some artificial data by:

> x <- 1:20

> y <- x+rnorm(20)

Fit a polynomial in x for predicting y. Compute β̂ in two ways — by lm() and by
using the direct calculation described in the chapter. At what degree of polynomial
does the direct calculation method fail? (Note the need for the I() function in
fitting the polynomial, that is, lm(y ~ x + I(x^2)).

4. The dataset prostate comes from a study on 97 men with prostate cancer who
were due to receive a radical prostatectomy. Fit a model with lpsa as the response
and lcavol as the predictor. Record the residual standard error and the R2. Now
add lweight, svi, lbph, age, lcp, pgg45 and gleason to the model one at a
time. For each model record the residual standard error and the R2. Plot the
trends in these two statistics.

5. Using the prostate data, plot lpsa against lcavol. Fit the regressions of lpsa
on lcavol and lcavol on lpsa. Display both regression lines on the plot. At
what point do the two lines intersect?

6. Thirty samples of cheddar cheese were analyzed for their content of acetic acid,
hydrogen sulfide and lactic acid. Each sample was tasted and scored by a panel of
judges and the average taste score produced. Use the cheddar data to answer the
following:
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(a) Fit a regression model with taste as the response and the three chemical con-
tents as predictors. Report the values of the regression coefficients.

(b) Compute the correlation between the fitted values and the response. Square it.
Identify where this value appears in the regression output.

(c) Fit the same regression model but without an intercept term. What is the value
of R2 reported in the output? Compute a more reasonable measure of the good-
ness of fit for this example.

(d) Compute the regression coefficients from the original fit using the QR decom-
position showing your R code.

7. An experiment was conducted to determine the effect of four factors on the re-
sistivity of a semiconductor wafer. The data is found in wafer where each of the
four factors is coded as − or + depending on whether the low or the high setting
for that factor was used. Fit the linear model resist ∼ x1 + x2 + x3 + x4.

(a) Extract the X matrix using the model.matrix function. Examine this to deter-
mine how the low and high levels have been coded in the model.

(b) Compute the correlation in the X matrix. Why are there some missing values
in the matrix?

(c) What difference in resistance is expected when moving from the low to the
high level of x1?

(d) Refit the model without x4 and examine the regression coefficients and stan-
dard errors? What stayed the the same as the original fit and what changed?

(e) Explain how the change in the regression coefficients is related to the correla-
tion matrix of X .

8. An experiment was conducted to examine factors that might affect the height of
leaf springs in the suspension of trucks. The data may be found in truck. The
five factors in the experiment are set to − and + but it will be more convenient for
us to use −1 and +1. This can be achieved for the first factor by:

truck$B <- sapply(truck$B, function(x) ifelse(x=="-",-1,1))

Repeat for the other four factors.

(a) Fit a linear model for the height in terms of the five factors. Report on the value
of the regression coefficients.

(b) Fit a linear model using just factors B, C, D and E and report the coefficients.
How do these compare to the previous question? Show how we could have
anticipated this result by examining the X matrix.

(c) Construct a new predictor called A which is set to B+C+D+E. Fit a linear model
with the predictors A, B, C, D, E and O. Do coefficients for all six predictors
appear in the regression summary? Explain.

(d) Extract the model matrix X from the previous model. Attempt to compute β̂
from (XT X)−1XT y. What went wrong and why?

(e) Use the QR decomposition method as seen in Section 2.7 to compute β̂. Are
the results satisfactory?

(f) Use the function qr.coef to correctly compute β̂.



Chapter 3

Inference

In this chapter we show how to make hypothesis tests and construct confidence in-
tervals. These inferential methods are the building blocks for drawing conclusions
using models and data.

If you simply wish to estimate the parameters β, it is not essential to assume any
distributional form for the errors ε. However, if we want to make any confidence
intervals or perform any hypothesis tests using the most commonly used methods,
we will need to do this. Now we are going to assume that the errors are normally
distributed. Often this is quite reasonable but we will discuss later how we can check
this assumption and how we might deal with data where the normality assumption is
not justifiable.

If we have chosen to use least squares estimation, we should already have as-
sumed that the errors are independent and identically distributed (i.i.d.) with mean
0 and variance σ2, so we have ε ∼ N(0,σ2I). Now since y = Xβ + ε, we have
y ∼ N(Xβ,σ2I) which is a compact description of the regression model. From this
we find, using the fact that linear combinations of normally distributed values are
also normal, that:

β̂ = (XT X)−1XT y ∼ N(β,(XT X)−1σ2)

3.1 Hypothesis Tests to Compare Models

Given several predictors for a response, we might wonder whether all are needed.
Consider a larger model, Ω, and a smaller model, ω, which consists of a subset of the
predictors that are in Ω. If there is not much difference in the fit, we would prefer the
smaller model on the principle that simpler explanations are preferred. On the other
hand, if the fit of the larger model is appreciably better, we will prefer it. We will take
ω to represent the null hypothesis and Ω to represent the alternative. A geometrical
view of the problem may be seen in Figure 3.1.

If RSSω−RSSΩ is small, then the fit of the smaller model is almost as good as the
larger model and so we would prefer the smaller model on the grounds of simplicity.
On the other hand, if the difference is large, then the superior fit of the larger model
would be preferred. This suggests that something like:

RSSω −RSSΩ

RSSΩ

would be a potentially good test statistic where the denominator is used for scaling
purposes.

33
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Large model space Small model
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Residual for large
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Residual for small
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Y

Figure 3.1 Geometric view of the comparison between big model, Ω, and small
model, ω. The squared length of the residual vector for the big model is RSSΩ while
that for the small model is RSSω. By Pythagoras’ theorem, the squared length of the
vector connecting the two fits is RSSω −RSSΩ. A small value for this indicates that
the small model fits almost as well as the large model and thus might be preferred
due to its simplicity.

As it happens, the same test statistic arises from the likelihood-ratio testing ap-
proach. We give an outline of the development: If L(β,σ|y) is the likelihood function,
then the likelihood-ratio statistic is:

maxβ,σ∈Ω L(β,σ|y)
maxβ,σ∈ω L(β,σ|y)

The test should reject if this ratio is too large. Working through the details, we find
that for each model:

L(β̂, σ̂|y) ∝ σ̂−n

which after some manipulation gives us a test that rejects if:

RSSω −RSSΩ

RSSΩ
> a constant

which is the same statistic suggested by the geometric view. Now suppose that the
dimension (or number of parameters) of Ω is p and the dimension of ω is q, then we
can use some more scaling to get an F-statistic which has an F-distribution under the
null hypothesis:

F =
(RSSω −RSSΩ)/(p−q)

RSSΩ/(n− p)
∼ Fp−q,n−p

Details of the derivation of this statistic may be found in more theoretically oriented
texts such as Sen and Srivastava (1990).

Thus we would reject the null hypothesis if F > F
(α)
p−q,n−p. The degrees of free-
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dom of a model are (usually) the number of observations minus the number of pa-
rameters so this test statistic can also be written:

F =
(RSSω −RSSΩ)/(d fω −d fΩ)

RSSΩ/d fΩ

where d fΩ = n− p and d fω = n−q. The same test statistic applies not just to when
ω is a subset of Ω, but also to a subspace. This test is very widely used in regression
and analysis of variance. When it is applied in different situations, the form of test
statistic may be reexpressed in various ways. The beauty of this approach is you
only need to know the general form. In any particular case, you just need to figure
out which models represent the null and alternative hypotheses, fit them and compute
the test statistic. The test is very versatile.

3.2 Testing Examples

Test of all the predictors
Are any of the predictors useful in predicting the response? Let the full model

(Ω) be y = Xβ+ ε where X is a full-rank n× p matrix and the reduced model (ω) be
y = µ+ ε. We estimate µ by ȳ. We write the null hypothesis as:

H0 : β1 = . . .βp−1 = 0

Now RSSΩ = (y− X β̂)T (y− X β̂) = ε̂T ε̂, the residual sum of squares for the full
model, while RSSω = (y− ȳ)T (y− ȳ) = T SS, which is called the total sum of squares
corrected for the mean. The F-statistic is:

F =
(TSS−RSS)/(p−1)

RSS/(n− p)

We would now refer to Fp−1,n−p for a critical value or a p-value. Large values of F

would indicate rejection of the null. Traditionally, the information in the above test
is presented in an analysis of variance or ANOVA table. Most computer packages
produce a variant on this. See Table 3.1 for a typical layout. It is not really necessary
to specifically compute all the elements of the table. As the originator of the table,
Fisher said in 1931, it is “nothing but a convenient way of arranging the arithmetic.”
Since he had to do his calculations by hand, the table served a necessary purpose, but
it is not essential now.

Source Deg. of Freedom Sum of Squares Mean Square F
Regression p−1 SSreg SSreg/(p−1) F
Residual n− p RSS RSS/(n− p)
Total n−1 TSS

Table 3.1 Analysis of variance table.

A failure to reject the null hypothesis is not the end of the game — you must still
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investigate the possibility of nonlinear transformations of the variables and of outliers
which may obscure the relationship. Even then, you may just have insufficient data
to demonstrate a real effect, which is why we must be careful to say “fail to reject”
the null rather than “accept” the null. It would be a mistake to conclude that no real
relationship exists. This issue arises when a pharmaceutical company wishes to show
that a proposed generic replacement for a brand-named drug is equivalent. It would
not be enough in this instance just to fail to reject the null. A higher standard would
be required.

When the null is rejected, this does not imply that the alternative model is the best
model. We do not know whether all the predictors are required to predict the response
or just some of them. Other predictors might also be added or existing predictors
transformed or recombined. Either way, the overall F-test is just the beginning of an
analysis and not the end.

Let’s illustrate this test using the Galápagos Islands dataset introduced in the last
chapter. We fit the same model as before with the number of species as the response
and the geographic variables as predictors.

> data(gala, package="faraway")

> lmod <- lm(Species ~ Area + Elevation + Nearest + Scruz + Adjacent,

gala)

We can obtain the result of the test of all predictors by fitting the null model and the
using the anova function:

> nullmod <- lm(Species ~ 1, gala)

> anova(nullmod, lmod)

Analysis of Variance Table

Model 1: Species ~ 1

Model 2: Species ~ Area + Elevation + Nearest + Scruz + Adjacent

Res.Df RSS Df Sum of Sq F Pr(>F)

1 29 381081

2 24 89231 5 291850 15.7 6.8e-07

We can see directly the result of the test of whether any of the predictors have sig-
nificance in the model — that is, whether β1 = β2 = β3 = β4 = β5 = 0. Since the
p-value of 6.8×10−7 is so small, this null hypothesis is rejected.

Just for verification purposes, we can also do it directly using the F-testing for-
mula:

> (rss0 <- deviance(nullmod))

[1] 381081

> (rss <- deviance(lmod))

[1] 89231

> (df0 <- df.residual(nullmod))

[1] 29

> (df <- df.residual(lmod))

[1] 24

> (fstat <- ((rss0-rss)/(df0-df))/(rss/df))

[1] 15.699

> 1-pf(fstat, df0-df, df)

[1] 6.8379e-07
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The information also appears in the final line of the summary(lmod) output as seen
on page 18.

Testing one predictor

Can one particular predictor be dropped from the model? The null hypothesis is
then H0 : βi = 0. Let Ω be the model with all the predictors of interest which has
p parameters and let ω be the model with all the same predictors except predictor i.
Let’s test whether Area can be dropped from the full model by testing the hypothesis
that the corresponding parameter is zero. Using the general method, we fit a model
without Area and obtain this:

> lmods <- lm(Species ~ Elevation + Nearest + Scruz + Adjacent, gala)

> anova(lmods, lmod)

Analysis of Variance Table

Model 1: Species ~ Elevation + Nearest + Scruz + Adjacent

Model 2: Species ~ Area + Elevation + Nearest + Scruz + Adjacent

Res.Df RSS Df Sum of Sq F Pr(>F)

1 25 93469

2 24 89231 1 4238 1.14 0.3

The p-value of 0.3 indicates that the null hypothesis cannot be rejected here.
An alternative approach is to use a t-statistic for testing the hypothesis:

ti = β̂i/se(β̂i)

and check for significance using a t-distribution with n− p degrees of freedom. It can
be shown that t2

i is equal to the appropriate F-statistic computed using the method
shown above. We can see the t-statistic and p-value in usual regression summary
output:

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.06822 19.15420 0.37 0.7154

Area -0.02394 0.02242 -1.07 0.2963

Elevation 0.31946 0.05366 5.95 0.0000038

Nearest 0.00914 1.05414 0.01 0.9932

Scruz -0.24052 0.21540 -1.12 0.2752

Adjacent -0.07480 0.01770 -4.23 0.0003

n = 30, p = 6, Residual SE = 60.975, R-Squared = 0.77

We can verify that this is indeed the same result. Of course, it is easier to obtain the
summary output so we will use this method from now on.

It is important to be precise about what hypothesis is being tested. For example,
consider another test of H0 : βArea = 0:

> sumary(lm(Species ~ Area, gala))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 63.7829 17.5244 3.64 0.00109

Area 0.0820 0.0197 4.16 0.00027

n = 30, p = 2, Residual SE = 91.732, R-Squared = 0.38
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We see a very different p-value of 0.001 which changes the conclusion of the hy-
pothesis test. The null is firmly rejected.

From this we can see that it is very important that we specify which other predic-
tors are included in the models specifying the null and alternative. It is not sufficient
simply to state the null hypothesis as H0 : βArea = 0.

Now we may ask what is the effect of area on the number of species. We postpone
discussion until Chapter 5, but we can at least see that the question will have no
simple answer.

Testing a pair of predictors
Suppose we were interested in whether the area of either the current island or the

adjacent island had any relation to the response. This corresponds to a null hypothesis
of H0 : βArea = βAdjacent = 0 where we shall also specify that other three predictors
are included in the model. We can test this by fitting a model without these two terms
and constructing the F-test:

> lmods <- lm(Species ~ Elevation + Nearest + Scruz, gala)

> anova(lmods, lmod)

Analysis of Variance Table

Model 1: Species ~ Elevation + Nearest + Scruz

Model 2: Species ~ Area + Elevation + Nearest + Scruz + Adjacent

Res.Df RSS Df Sum of Sq F Pr(>F)

1 26 158292

2 24 89231 2 69060 9.29 0.001

The null hypothesis is rejected because the p-value is small. This tells us that such a
simplification to remove these two predictors is not justifiable.

Now you may wonder whether we could have divined the same result from look-
ing at the regression summary output where the corresponding p-values for the two
terms are 0.3 and 0.0003. Immediately, we have the problem of making a decision
based on two p-values rather than one. There is no simple way to combine these.
Furthermore, each of these p-values corresponds to a test where the other predictor
is included in the model. So in short, if you want to test two (or more) predictors, you
need to use the single F-test. You cannot reliably use the two (in this case) t-tests.

Testing a subspace
Some tests cannot be expressed simply in terms of the inclusion or exclusion

of subsets of predictors. Consider an example where we test whether the areas of
the current and adjacent island can be added together and used in place of the two
separate predictors. Such a test can be expressed as the hypothesis that:

H0 : βArea = βAdjacent

The model corresponding to this null hypothesis represents a linear subspace of the
full model. We can test this by specifying the null model and applying the F-test
procedure:

> lmods <- lm(Species ~ I(Area+Adjacent) + Elevation + Nearest +

Scruz, gala)
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> anova(lmods, lmod)

Analysis of Variance Table

Model 1: Species ~ I(Area + Adjacent) + Elevation + Nearest + Scruz

Model 2: Species ~ Area + Elevation + Nearest + Scruz + Adjacent

Res.Df RSS Df Sum of Sq F Pr(>F)

1 25 109591

2 24 89231 1 20360 5.48 0.028

The function I() ensures that the argument is evaluated (in this case actual addition)
rather than interpreted as part of the model formula. The p-value of 0.028 indicates
that the null can be rejected here and the proposed simplification to a single combined
area predictor is not justifiable.

Another example of subspace testing occurs when we want to test whether a
parameter can be set to a particular value. For example:

H0 : βElevation = 0.5

This specifies a particular subspace of the full model. We can set a fixed term in the
regression equation using an offset. We fit this model and compare it to the full:

> lmods <- lm(Species ~ Area+ offset(0.5*Elevation) + Nearest + Scruz

+ Adjacent, gala)

> anova(lmods, lmod)

Analysis of Variance Table

Model 1: Species ~ Area + offset(0.5 * Elevation) + Nearest + Scruz +

Adjacent

Model 2: Species ~ Area + Elevation + Nearest + Scruz + Adjacent

Res.Df RSS Df Sum of Sq F Pr(>F)

1 25 131312

2 24 89231 1 42081 11.3 0.0026

We see that the p-value is small and the null hypothesis is rejected. A simpler way
to test such point hypotheses is to use a t-statistic:

t = (β̂− c)/se(β̂)

where c is the point hypothesis. So in our example the statistic and corresponding
p-value are:

> (tstat <- (0.31946-0.5)/0.05366)

[1] -3.3645

> 2*pt(tstat, 24)

[1] 0.0025722

We can see the p-value is the same as before and if we square the t-statistic

> tstat^2

[1] 11.32

we find we get the same F-value as above. This latter approach is preferred in prac-
tice since we do not need to fit two models but it is important to understand that it is
equivalent to the result obtained using the general F-testing approach.
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Tests we cannot do

We cannot test a non-linear hypothesis like H0 : β jβk = 1 using the F-testing
method. We would need to fit a nonlinear model and that lies beyond the scope of
this book.

Also we cannot compare models that are not nested using an F-test. For exam-
ple, if one model has Area and Elevation as predictors while another has Area,
Adjacent and Scruz, we cannot use the F-test. We can ask which model is prefer-
able. Methods for doing this will be discussed in Chapter 10.

A further difficulty can arise when the models we compare use different datasets.
This can arise quite easily when values of some variables are missing as different
models may use different cases depending on which are complete. F-tests are not
directly possible here. Methods for dealing with this are presented in Chapter 13.

3.3 Permutation Tests

The tests we have considered thus far are based on the assumption of normal errors.
Arguments based on the central limit theorem mean that even if the errors are not
normal, inference based on the assumption of normality can be approximately correct
provided the sample size is large enough. Unfortunately, it is not possible to say how
large the sample has to be or how close to normality the error distribution has to be
before the approximation is satisfactory. Permutation tests offer an alternative that
needs no assumption of normality.

We can put a different interpretation on the hypothesis tests we are making. For
the Galápagos dataset, we might suppose that if the number of species had no re-
lation to the five geographic variables, then the observed response values would be
randomly distributed between the islands without relation to the predictors. The
F-statistic is a good measure of the association between the predictors and the re-
sponse with larger values indicating stronger associations. We might then ask what
the chance would be under this assumption that an F-statistic would be observed as
large or larger than the one we actually observed. We could compute this exactly by
computing the F-statistic for all possible (n!) permutations of the response variable
and see what proportion exceeds the observed F-statistic. This is a permutation test.
If the observed proportion is small, then we must reject the contention that the re-
sponse is unrelated to the predictors. Curiously, this proportion is estimated by the
p-value calculated in the usual way based on the assumption of normal errors thus
saving us from the massive task of actually computing the regression on all those
computations. See Freedman and Lane (1983) for details.

Let’s see how we can apply the permutation test to the Galápagos data. We
choose a model with just Nearest and Scruz so as to get a p-value for the F-statistic
that is not too small (and therefore less interesting):

> lmod <- lm(Species ~ Nearest + Scruz, gala)

> lms <- summary(lmod)

We can extract the F-statistic in a way that will be convenient for later computa-
tion:
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> lms$fstatistic

value numdf dendf

0.60196 2.00000 27.00000

> 1-pf(lms$fstatistic[1],lms$fstatistic[2],lms$fstatistic[3])

value

0.55493

The function sample() generates random permutations. We compute the F-
statistic for 4000 randomly selected permutations and see what proportion exceeds
the F-statistic for the original data:

> nreps <- 4000

> set.seed(123)

> fstats <- numeric(nreps)

> for(i in 1:nreps){

lmods <- lm(sample(Species) ~ Nearest+Scruz , gala)

fstats[i] <- summary(lmods)$fstat[1]

}

> mean(fstats > lms$fstat[1])

[1] 0.55825

This should take less than a minute on any relatively new computer. We could speed
this process up noting that the X-matrix does not change in all 4000 regressions so
we could avoid repeating a lot of the calculations by using the update function.
However, when considering such an improvement, we should notice that the slow
result will arrive well before we have even typed anything more efficient. Of course,
this may not be true for examples with bigger data.

The function set.seed ensures that the random numbers used to generate the
permutations will come out the same for you if you try this. If you don’t do this,
you will get a slightly different result each time because of the random selection
of the permutations. That’s alright — setting the seed is only necessary for exact
reproducibility.

Our estimated p-value using the permutation test is 0.56, which is close to the
normal theory-based value of 0.55. We could reduce variability in the estimation of
the p-value simply by computing more random permutations. Since the permutation
test does not depend on the assumption of normality, we might regard it as superior
to the normal theory based value. In this case, the results are very similar and not
close to any decision boundary. But if there was some crucial difference in the con-
clusion and there was some evidence of non-normal errors, then we would prefer the
permutation-based test.

Tests involving just one predictor also fall within the permutation test framework.
We permute that predictor rather than the response. Let’s test the Scruz predictor in
the model. We can extract the needed information from:

> summary(lmod)$coef[3,]

Estimate Std. Error t value Pr(>|t|)

-0.44064 0.40253 -1.09467 0.28333

Now we perform 4000 permutations of Scruz and check what fraction of the t-
statistics exceeds −1.09 in absolute value:

> tstats <- numeric(nreps)
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> set.seed(123)

> for(i in 1:nreps){

lmods <- lm(Species ~ Nearest+sample(Scruz), gala)

tstats[i] <- summary(lmods)$coef[3,3]

}

> mean(abs(tstats) > abs(lms$coef[3,3]))

[1] 0.26775

The outcome is very similar to the observed normal-based p-value of 0.28. Again, in
case of serious disagreement, we would prefer the permutation-based result.

The idea of permutation tests works well in conjunction with the principle of
random allocation of units in designed experiments. When the values of X really
have been randomly assigned to the experimental units which then produce response
Y , it is easy to justify a permutation-based testing procedure to check whether there
truly is any relation between X and Y . In practice, many will simply use the normal
assumption-based tests but this can be done in the knowledge that the permutation
tests will tend to agree, provided the assumption is justifiable.

3.4 Sampling

The method of data collection affects the conclusions we can draw. The mathematical
model Y = Xβ+ ε describes how the response Y is generated. If we specified β, we
could generate Y using a computer simulation, but how can this be related to real
data?

For designed experiments, we can view nature as the computer generating the
observed responses. We input X and record Y . With no cost or time constraints, we
could repeat this as many times as we liked, but in practice we collect a sample of
fixed size. Our inference then tells us something about the β underlying this natural
process.

For observational studies, we envisage a finite population from which we draw
the sample that is our data. We want to say something about the unknown population
value of β, using estimated values β̂ that are obtained from the sample data. We
prefer that the data be a simple random sample of the population. We also assume
that the size of the sample is a small fraction of the population size. We can also
accommodate more complex random sampling designs, but this would require more
complex inferential methods.

Sometimes, researchers may try to select a representative sample by hand. Quite
apart from the obvious difficulties in doing this, the logic behind the statistical infer-
ence depends on the sample being random. This is not to say that such studies are
worthless, but that it would be unreasonable to apply anything more than descriptive
statistical techniques. Confidence in the conclusions from such data is necessarily
suspect.

A sample of convenience is where the data are not collected according to a sam-
pling design. In some cases, it may be reasonable to proceed as if the data were
collected using a random mechanism. For example, suppose we take the first 400
people from the phone book whose names begin with the letter P. Provided there is
no ethnic effect, it may be reasonable to consider this a random sample from the pop-
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ulation defined by the entries in the phone book. Here we are assuming the selection
mechanism is effectively random with respect to the objectives of the study. The data
are as good as random. Other situations are less clear-cut and judgment will be re-
quired. Such judgments are easy targets for criticism. Suppose you are studying the
behavior of alcoholics and advertise in the media for study subjects. It seems very
likely that such a sample will be biased, perhaps in unpredictable ways. In cases such
as this, a sample of convenience is clearly biased in which case conclusions must be
limited to the sample itself. This situation reduces to the following case.

Sometimes, the sample is the complete population. In this case, one might argue
that inference is not required since the population and sample values are one and the
same. For the gala data, the sample is effectively the population or a large and biased
proportion thereof. Permutation tests make it possible to give some meaning to the
p-value when the sample is the population or for samples of convenience although
one has to be clear that the conclusion applies only to the particular sample. An-
other approach that gives meaning to the p-value when the sample is the population
involves the imaginative concept of “alternative worlds” where the sample or popu-
lation at hand is supposed to have been randomly selected from parallel universes.
This argument is more speculative.

3.5 Confidence Intervals for β

Confidence intervals (CIs) provide an alternative way of expressing the uncertainty
in the estimates of β. They take the form:

β̂i ± t
(α/2)
n−p se(β̂)

Consider this model for the Galápagos data:

> lmod <- lm(Species ~ Area + Elevation + Nearest + Scruz + Adjacent,

gala)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.06822 19.15420 0.37 0.7154

Area -0.02394 0.02242 -1.07 0.2963

Elevation 0.31946 0.05366 5.95 0.0000038

Nearest 0.00914 1.05414 0.01 0.9932

Scruz -0.24052 0.21540 -1.12 0.2752

Adjacent -0.07480 0.01770 -4.23 0.0003

n = 30, p = 6, Residual SE = 60.975, R-Squared = 0.77

We can construct individual 95% CIs for βArea for which we need the 2.5% and
97.5% percentiles of the t-distribution with 30−6 = 24 degrees of freedom:

> qt(0.975, 30-6)

[1] 2.0639

> -0.02394 + c(-1,1) * 2.0639 * 0.02242

[1] -0.070213 0.022333

CIs have a duality with two-sided hypothesis tests. If the interval contains zero, this
indicates that the null hypothesis H0 : βArea = 0 would not be rejected at the 5%
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level. We can see from the summary that the p-value is 29.6% — greater than 5%
— confirming this point. Indeed, any point null hypothesis lying within the interval
would not be rejected.

The CI for βAd jacent is:

> -0.07480 + c(-1,1) * 2.0639 * 0.01770

[1] -0.111331 -0.038269

Because zero is not in this interval, the null is rejected. Nevertheless, this CI is
relatively wide in the sense that the upper limit is about three times larger than the
lower limit. This means that we are not really that confident about what the exact
effect of the area of the adjacent island on the number of species really is, even
though the statistical significance means we are confident it is negative. A convenient
way to obtain all the univariate intervals is:

> confint(lmod)

2.5 % 97.5 %

(Intercept) -32.464101 46.600542

Area -0.070216 0.022339

Elevation 0.208710 0.430219

Nearest -2.166486 2.184774

Scruz -0.685093 0.204044

Adjacent -0.111336 -0.038273

The advantage of the confidence interval relative to the corresponding hypothesis
test is that we get information about plausible ranges for the parameters. This is
particularly valuable when the parameter is directly interpretable (for example, as
the difference between two treatments).

The selection of a particular level of confidence level, say 95%, means we can
only make tests at the 5% level. The hypothesis test approach does give a p-value
which allows us to see how the acceptance or rejection of the null hypothesis depends
on the choice of level. Even so it is dangerous to read too much into the relative
sizes of p-values in determining the practical importance of a predictor because there
is a temptation to view small p-values as indicating an important (rather than just
statistically significant) effect. Confidence intervals are better in this respect because
they tell us about the size of the effect.

If you are interested in more than one parameter, you can construct a 100(1−α)%
confidence region for β using:

(β̂−β)T XT X(β̂−β)≤ pσ̂2F
(α)
p,n−p

These regions are ellipsoidally shaped. Because these ellipsoids lie in higher dimen-
sions, they cannot easily be visualized except for the two-dimensional case.

Let’s see how these compare to the univariate confidence intervals. For example,
we can construct the joint 95% confidence region for βArea and βAd jacent . First, we
load in a package for drawing confidence ellipses (which is not part of base R and
so may need to be installed using install.packages("ellipse")) and make the
plot:

> require(ellipse)

> plot(ellipse(lmod,c(2,6)),type="l",ylim=c(-0.13,0))

> points(coef(lmod)[2], coef(lmod)[6], pch=19)
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We have added the point of the least squares estimates which lies at the center of the
ellipse as seen in Figure 3.2. We can also add the univariate confidence intervals for
both dimensions seen as dotted lines:

> abline(v=confint(lmod)[2,],lty=2)

> abline(h=confint(lmod)[6,],lty=2)
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Figure 3.2 95% Confidence ellipse and intervals for βArea. and βAd jacent . The cen-
tral dot represents the point of the estimates.

We can determine the outcome of various hypotheses from the plot. The joint hypoth-
esis H0 : βArea = βAd jacent = 0 is rejected because the origin does not lie inside the
ellipse. The hypothesis H0 : βArea = 0 is not rejected because zero does lie within the
vertical dashed lines whereas the horizontal dashed lines do not encompass zero and
so H0 : βAd jacent = 0 is rejected. We must also specify all the other three predictors
are part of the model used to make these tests and confidence statements.
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Now in this particular example, we find no disagreement between the two uni-
variate tests and the bivariate tests. But imagine a situation where the origin lay in
the region marked A on the plot. The point of the null hypothesis would lay outside
the ellipse and so the bivariate test would reject while both univariate tests would
reject. The situation would reverse for a null hypothesis in the region marked B.

In both cases, the correct answer to the joint hypothesis is given by the position
relative to the ellipse and not the lines. If you want to test multiple parameters, you
need to use a joint testing procedure and not try to combine several univariate tests. In
higher dimensions, confidence ellipses are not easily visualized so our example here
is more of educational than practical value. Nevertheless, it should serve as a caution
in interpreting a collection of univariate hypothesis tests or confidence intervals.

3.6 Bootstrap Confidence Intervals

The F-based and t-based confidence regions and intervals we have described depend
on the assumption of normality. The bootstrap method provides a way to construct
confidence statements without this assumption.

To understand how this method works, think about how we might determine the
distribution of an estimator without using the mathematical methods of distribution
theory. We could repeatedly generate artificial data from the true model, compute the
estimate each time and gather the results to study the distribution. This technique,
called simulation, is not available to us for real data, because we do not know the
true model. Nevertheless, it will reveal the path to a practical solution.

Simulation

The idea is to sample from the known distribution and compute the estimate,
repeating many times to find as good an estimate of the sampling distribution of the
estimator as we need. For the regression problem, it is easiest to start with a sample
from the error distribution since these are assumed to be independent and identically
distributed:

1. Generate ε from the known error distribution.

2. Form y = Xβ+ ε from the known β and fixed X .

3. Compute β̂.

We repeat these three steps many times. We can estimate the sampling distribution
of β̂ using the empirical distribution of the generated β̂, which we can estimate as ac-
curately as we please by simply running the simulation long enough. This technique
is useful for a theoretical investigation of the properties of a proposed new estimator.
We can see how its performance compares to other estimators. However, it is of no
value for the actual data since we do not know the true error distribution and we do
not know the true β.

Bootstrap

The bootstrap emulates the simulation procedure above except instead of sam-
pling from the true model, it samples from the observed data. Remarkably, this
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technique is often effective. It sidesteps the need for theoretical calculations that
may be extremely difficult or even impossible. See Efron and Tibshirani (1993) for a
book-length treatment of the topic. To see how the bootstrap method compares with
simulation, we spell out the steps involved. In both cases, we consider X fixed.

The bootstrap method mirrors the simulation method, but uses quantities we do
know. Instead of sampling from the population distribution, which we do not know
in practice, we resample from the data:

1. Generate ε∗ by sampling with replacement from ε̂1, . . . , ε̂n.

2. Form y∗ = X β̂+ ε∗.

3. Compute β̂∗ from (X ,y∗).

This time, we use only quantities that we know. For very small n, it is possible to
compute β̂∗ for every possible sample from ε̂1, . . . , ε̂n, but usually we can only take
as many samples as we have computing power available. This number of bootstrap
samples can be as small as 50 if all we want is an estimate of the variance of our
estimates but needs to be larger if confidence intervals are wanted.

To implement this, we need to be able to take a sample of residuals with replace-
ment. sample() is good for generating random samples of indices:

> sample(10,rep=TRUE)

[1] 7 9 9 2 5 7 4 1 8 9

You will likely get a different result because the outcome is, by definition, random.
To make sure we both get the same result, we have set the random number generator
seed using set.seed. Here we have used 4000 replications which should take less
than minute to compute. We set up a matrix coefmat to store the results. We need the
residuals and fitted values from the model which we save as resids and preds. We
repeatedly generate boostrapped responses as booty. The update function is more
efficient since we are only changing the response, not the predictors. The X-part of
the computation does not need to be repeated every time.

> set.seed(123)

> nb <- 4000

> coefmat <- matrix(NA,nb,6)

> resids <- residuals(lmod)

> preds <- fitted(lmod)

> for(i in 1:nb){

booty <- preds + sample(resids , rep=TRUE)

bmod <- update(lmod , booty ~ .)

coefmat[i,] <- coef(bmod)

}

> colnames(coefmat) <- c("Intercept",colnames(gala[,3:7]))

> coefmat <- data.frame(coefmat)

> apply(coefmat,2,function(x) quantile(x,c(0.025,0.975)))

Intercept Area Elevation Nearest Scruz Adjacent

2.5% -24.534 -0.062786 0.22861 -1.7133 -0.60604 -0.104252

97.5% 41.439 0.018535 0.42110 2.0547 0.17248 -0.040944

The results are saved and formed into a data frame with named columns. We then
compute the empirical 2.5% and 97.5% percentiles of the bootstrapped regression
coefficients. These form the 95% bootstrap confidence intervals for β. Compare
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these to those computed using normal theory earlier in the chapter. The position of
zero, inside or outside the interval, is the same for both methods so qualitatively, the
results are similar even though the numerical values differ somewhat.

We can plot the estimated densities of two of the coefficients along with the
confidence intervals as seen in Figure 3.3.

> require(ggplot2)

> ggplot(coefmat, aes(x=Area)) + geom_density() + geom_vline(xint=c

(-0.0628, 0.0185),lty=2)

> ggplot(coefmat, aes(x=Adjacent)) + geom_density() + geom_vline(xint=

c(-0.104, -0.0409),lty=2)
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Figure 3.3 Bootstrap regression coefficient densities for βArea and βAd jacent ; 95%
confidence intervals are shown as dotted lines

We see in both cases that the bootstrap density is symmetrical and similar to a normal
density. This is not always so and our method for computing the bootstrap confidence
intervals does not rely on symmetry.

Bootstrap methods can also be used for hypothesis testing although permutation
tests are generally better for this purpose. There are alternative resampling methods.
We can resample (X ,Y ) pairs rather than residuals although this seems less attractive,
particularly when X is regarded as fixed, such as in designed experiments. There are
also more sophisticated methods for constructing the confidence intervals. For more
on this, see Efron and Tibshirani (1993) or Davison (1997).

Exercises

1. For the prostate data, fit a model with lpsa as the response and the other vari-
ables as predictors:

(a) Compute 90 and 95% CIs for the parameter associated with age. Using just
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these intervals, what could we have deduced about the p-value for age in the
regression summary?

(b) Compute and display a 95% joint confidence region for the parameters asso-
ciated with age and lbph. Plot the origin on this display. The location of the
origin on the display tells us the outcome of a certain hypothesis test. State that
test and its outcome.

(c) In the text, we made a permutation test corresponding to the F-test for the
significance of all the predictors. Execute the permutation test corresponding
to the t-test for age in this model. (Hint: {summary(g)$coef[4,3] gets you
the t-statistic you need if the model is called g.)

(d) Remove all the predictors that are not significant at the 5% level. Test this
model against the original model. Which model is preferred?

2. Thirty samples of cheddar cheese were analyzed for their content of acetic acid,
hydrogen sulfide and lactic acid. Each sample was tasted and scored by a panel of
judges and the average taste score produced. Use the cheddar data to answer the
following:

(a) Fit a regression model with taste as the response and the three chemical con-
tents as predictors. Identify the predictors that are statistically significant at the
5% level.

(b) Acetic and H2S are measured on a log scale. Fit a linear model where all three
predictors are measured on their original scale. Identify the predictors that are
statistically significant at the 5% level for this model.

(c) Can we use an F-test to compare these two models? Explain. Which model
provides a better fit to the data? Explain your reasoning.

(d) If H2S is increased 0.01 for the model used in (a), what change in the taste

would be expected?

(e) What is the percentage change in H2S on the original scale corresponding to an
additive increase of 0.01 on the (natural) log scale?

3. Using the teengamb data, fit a model with gamble as the response and the other
variables as predictors.

(a) Which variables are statistically significant at the 5% level?

(b) What interpretation should be given to the coefficient for sex?

(c) Fit a model with just income as a predictor and use an F-test to compare it to
the full model.

4. Using the sat data:

(a) Fit a model with total sat score as the response and expend, ratio and
salary as predictors. Test the hypothesis that βsalary = 0. Test the hypoth-
esis that βsalary = βratio = βexpend = 0. Do any of these predictors have an
effect on the response?

(b) Now add takers to the model. Test the hypothesis that βtakers = 0. Compare
this model to the previous one using an F-test. Demonstrate that the F-test and
t-test here are equivalent.
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5. Find a formula relating R2 and the F-test for the regression.

6. Thirty-nine MBA students were asked about happiness and how this related to
their income and social life. The data are found in happy. Fit a regression model
with happy as the response and the other four variables as predictors.

(a) Which predictors were statistically significant at the 1% level?

(b) Use the table function to produce a numerical summary of the response. What
assumption used to perform the t-tests seems questionable in light of this sum-
mary?

(c) Use the permutation procedure described in Section 3.3 to test the significance
of the money predictor.

(d) Plot a histgram of the permutation t-statistics. Make sure you use the the prob-
ability rather than frequency version of the histogram.

(e) Overlay an appropriate t-density over the histogram. Hint: Use grid <-

seq(-3, 3, length = 300) to create a grid of values, then use the dt func-
tion to compute the t-density on this grid and the lines function to superim-
pose the result.

(f) Use the bootstrap procedure from Section 3.6 to compute 90% and 95% con-
fidence intervals for βmoney. Does zero fall within these confidence intervals?
Are these results consistent with previous tests?

7. In the punting data, we find the average distance punted and hang times of 10
punts of an American football as related to various measures of leg strength for
13 volunteers.

(a) Fit a regression model with Distance as the response and the right and left leg
strengths and flexibilities as predictors. Which predictors are significant at the
5% level?

(b) Use an F-test to determine whether collectively these four predictors have a
relationship to the response.

(c) Relative to the model in (a), test whether the right and left leg strengths have
the same effect.

(d) Construct a 95% confidence region for (βRStr,βLStr). Explain how the test in
(c) relates to this region.

(e) Fit a model to test the hypothesis that it is total leg strength defined by adding
the right and left leg strengths that is sufficient to predict the response in com-
parison to using individual left and right leg strengths.

(f) Relative to the model in (a), test whether the right and left leg flexibilities have
the same effect.

(g) Test for left–right symmetry by performing the tests in (c) and (f) simultane-
ously.

(h) Fit a model with Hang as the response and the same four predictors. Can we
make a test to compare this model to that used in (a)? Explain.



Chapter 4

Prediction

Prediction is one of the main uses for regression models. We use subject matter
knowledge and the data to build a model y = Xβ+ ε. We may have transformed
some of the variables or omitted some data points but suppose we have settled on
a particular form for the model. Given a new set of predictors, x0, the predicted
response is:

ŷ0 = xT
0 β̂

However, we need to assess the uncertainty in this prediction. Decision makers need
more than just a point estimate to make rational choices. If the prediction has a wide
CI, we need to allow for outcomes far from the point estimate. For example, suppose
we need to predict the high water mark of a river. We may need to construct barriers
high enough to withstand floods much higher than the predicted maximum. Financial
projections are not so useful without a realistic estimate of uncertainty because we
need to make sensible plans for when events do not turn out as well as we predict.

4.1 Confidence Intervals for Predictions

There are two kinds of predictions made from regression models. One is a predicted
mean response and the other is a prediction of a future observation. To make the
distinction clear, suppose we have built a regression model that predicts the rental
price of houses in a given area based on predictors such as the number of bedrooms
and closeness to a major highway. There are two kinds of predictions that can be
made for a given x0:

1. Suppose a specific house comes on the market with characteristics x0. Its rental
price will be xT

0 β+ ε. Since Eε = 0, the predicted price is xT
0 β̂, but in assessing

the variance of this prediction, we must include the variance of ε.

2. Suppose we ask the question — “What would a house with characteristics x0 rent
for on average?” This selling price is xT

0 β and is again predicted by xT
0 β̂ but now

only the variance in β̂ needs to be taken into account.

Most times, we will want the first case, which is called “prediction of a future value,”
while the second case, called “prediction of the mean response” is less commonly
required. We have:

var (xT
0 β̂) = xT

0 (X
T X)−1x0σ2

A future observation is predicted to be xT
0 β̂+ ε. We do not know the future ε but

we expect it has mean zero so the point prediction is xT
0 β̂. It is usually reasonable to

51
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assume that the future ε is independent of β̂. So a 100(1−α) % CI for a single future
response is:

ŷ0 ± t
(α/2)
n−p σ̂

√

1+ xT
0 (X

T X)−1x0

There is a conceptual difference here because previous confidence intervals have
been for parameters. Parameters are considered to be fixed but unknown — they are
not random under the Frequentist approach we are using here. However, a future
observation is a random variable. For this reason, it is better to call this a prediction

interval. We are saying there is a 95% chance that the future value falls within this
interval whereas it would be incorrect to say that for a parameter.

The CI for the mean response for given x0 is:

ŷ0 ± t
(α/2)
n−p σ̂

√

xT
0 (X

T X)−1x0

This CI is typically much narrower than the prediction interval. Although we would
like to have a narrower prediction interval, we should not make the mistake of using
this version when forming intervals for predicted values.

4.2 Predicting Body Fat

Measuring body fat is not simple. Muscle and bone are denser than fat so an estimate
of body density can be used to estimate the proportion of fat in the body. Measuring
someone’s weight is easy but volume is more difficult. One method requires sub-
merging the body underwater in a tank and measuring the increase in the water level.
Most people would prefer not to be submerged underwater to get a measure of body
fat so we would like to have an easier method. In order to develop such a method,
researchers recorded age, weight, height, and 10 body circumference measurements
for 252 men. Each man’s percentage of body fat was accurately estimated by an un-
derwater weighing technique. Can we predict body fat using just the easy-to-record
measurements?

We load in the data and fit a model using all thirteen predictors.

> data(fat,package="faraway")

> lmod <- lm(brozek ~ age + weight + height + neck + chest + abdom +

hip + thigh + knee + ankle + biceps + forearm + wrist, data=fat)

We use brozek as the response (Brozek’s equation estimates percent body fat from
density). Normally, we would start with an exploratory analysis of the data and a
detailed consideration of what model to use but let’s be rash and just fit a model and
start predicting.

Let’s consider the typical man, exemplified by the median value of all the predic-
tors.

> x <- model.matrix(lmod)

> (x0 <- apply(x,2,median))

(Intercept) age weight height neck

1.00 43.00 176.50 70.00 38.00

chest abdom hip thigh knee

99.65 90.95 99.30 59.00 38.50
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ankle biceps forearm wrist

22.80 32.05 28.70 18.30

> (y0 <- sum(x0*coef(lmod)))

[1] 17.493

Note that x0 must include a leading one if there is a predictor in the model. The
predicted body fat for this “typical” man is 17.5%. The same result may be obtained
more directly using the predict function:

> predict(lmod,new=data.frame(t(x0)))

1

17.493

The predict function is quite fussy about the new value argument being in the form
of a data frame with the same format as the data used to fit the model.

Now if we want a 95% CI for the prediction, we must decide whether we are
predicting the body fat for one particular man or the mean body fat for all men have
these same characteristics. Here are the two intervals:

> predict(lmod,new=data.frame(t(x0)),interval="prediction")

fit lwr upr

1 17.493 9.6178 25.369

> predict(lmod,new=data.frame(t(x0)),interval="confidence")

fit lwr upr

1 17.493 16.944 18.042

The prediction interval ranges from 9.6% body fat up to 25.4%. This is a wide
interval since there is a large practical difference between these two limits. One
might question the value of such a model. The model has an R2 of 0.75 but perhaps
it is not sufficient for practical use. The confidence interval for the mean response
is much narrower, indicating we can be quite sure about the average body fat of the
man with the median characteristics. Such information might be useful from a public
health perspective where we are concerned about populations rather than individuals.

Extrapolation occurs when we try to predict the response for values of the pre-
dictor which lie outside the range of the original data. There are two different types
of extrapolation — quantitative and qualitative. Quantitative extrapolation concerns
x0 that are far from the original data. Prediction intervals become wider as we move
further from the original data. For multivariate x0, the concept of distance from the
original data is harder to define. In higher dimensions, most predictions will be sub-
stantial extrapolations. Let’s see what happens with a prediction for values at the
95th percentile of the data:

> (x1 <- apply(x,2,function(x) quantile(x,0.95)))

(Intercept) age weight height neck

1.000 67.000 225.650 74.500 41.845

chest abdom hip thigh knee

116.340 110.760 112.125 68.545 42.645

ankle biceps forearm wrist

25.445 37.200 31.745 19.800

> predict(lmod, new=data.frame(t(x1)), interval="prediction")

fit lwr upr

1 30.018 21.924 38.112

> predict(lmod, new=data.frame(t(x1)), interval="confidence")



54 PREDICTION

fit lwr upr

1 30.018 28.071 31.965

We can see that the confidence interval for the mean response is now almost 4%
wide compared with the just over 1% width seen in the middle of the data. This is
a considerable increase in uncertainty. The prediction interval is only slightly wider
because this interval is dominated by the new error ε rather than the uncertainty in
the estimation of β.

Unfortunately, there is a much greater source of variation here. We do not know
the correct model for this data. We may do our best with the available background
information and exploration of the data to find a good model. But no matter how
diligent we were, there would still be substantial model uncertainty. We have sub-
stantial uncertainty about what form the model should take. We can account for
parametric uncertainty using the methods we have described but model uncertainty

is much harder to quantify.

4.3 Autoregression

Consider the data shown in the first panel of Figure 4.1 which shows the monthly
number of airline passengers from the early years of air travel. This is an example
of a time series where a response variable is followed over time. We may want to
predict future values of the time series. Linear modeling can be used for this purpose.

We can see an increasing trend which looks more than linear. We can also see
some seasonal variation which is increasing over time. For these reasons, we will
model the logged passenger numbers. As a first attempt, we might fit a linear function
of time to predict this response:

> data(airpass, package="faraway")

> plot(pass ~ year, airpass, type="l", ylab="Log(Passengers)")

> lmod <- lm(log(pass) ~ year, airpass)

> lines(exp(predict(lmod)) ~ year, airpass)

We can see that fit captures the general upward trend in numbers but does nothing to
model the seasonal variation.

Suppose we wish to predict passenger numbers for the next month. We might
expect this to depend on the current month. The seasonal variation suggests we also
use the observed numbers from 12 months ago and since we are already considering
the monthly change from the current month, it makes sense to look at this change
from a year ago. Hence we use the numbers from 13 months ago as well. We
combine these in a regression model:

yt = β0 +β1yt−1 +β12yt−12 +β13yt−13 + εt

This is an example of an autoregressive process. The response depends on past
values of the response. The yt−i are called lagged variables. We construct a matrix
of lagged variables using the embed function. We need the current response plus up
to 13 lagged variables. We name the columns of the matrix in a convenient way and
form a data frame before fitting the model above:
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Figure 4.1 Airline passenger numbers 1949 through 1961. An exponential fit is
shown on the left. On the right, the fit of an autoregression is shown using dashed
lines.

> lagdf <- embed(log(airpass$pass),14)

> colnames(lagdf) <- c("y",paste0("lag",1:13))

> lagdf <- data.frame(lagdf)

> armod <- lm(y ~ lag1 + lag12 + lag13, data.frame(lagdf))

> sumary(armod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1385 0.0536 2.58 0.011

lag1 0.6923 0.0619 11.19 < 2e-16

lag12 0.9215 0.0347 26.53 < 2e-16

lag13 -0.6321 0.0677 -9.34 4.2e-16

n = 131, p = 4, Residual SE = 0.042, R-Squared = 0.99

We see all three lagged variables are strongly significant and the fit judged from the
R2 is strong. It is redundant to also include a year term in the model as this linear
change over time is now modeled using the lag one variable. We check the fit to the
data and observe it in the second panel of Figure 4.1.

> plot(pass ~ year, airpass, type="l")

> lines(airpass$year[14:144], exp(predict(armod)), lty=2)

Now suppose we want to predict future values. The last observation in our data is:

> lagdf[nrow(lagdf),]

y lag1 lag2 lag3 lag4 lag5 lag6 lag7 lag8

131 6.0684 5.9661 6.1334 6.2305 6.4069 6.4329 6.2823 6.157 6.1334

lag9 lag10 lag11 lag12 lag13

131 6.0379 5.9687 6.0331 6.0039 5.8916

The current response becomes the lag one value and the other two values also shift.
A 95% prediction interval for the (logged) number of passengers is:
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> predict(armod, data.frame(lag1=6.0684, lag12=6.0331, lag13=6.0039),

interval="prediction")

fit lwr upr

1 6.104 6.0206 6.1873

Now if we want to predict the next month, we will need to plug in the predicted value
of 6.104 along with two other shifted lag values. Subsequent predictions will also
need to be computed in this recursive manner.

The validity of future predictions depends on the assumption that future data will
follow this model. There is no statistical way to check this so we must accept the
possibility that our predictions could be badly wrong and plan accordingly.

4.4 What Can Go Wrong with Predictions?

1. Bad model. The Statistician does a poor job of modelling the data.

2. Quantitative extrapolation. We try to predict outcomes for cases with predictor
values much different from what we saw in the data. An example is seen above.
This is a practical problem in assessing the risk from low exposure to substances
which are dangerous in high quantities — consider second-hand tobacco smoke,
asbestos and radon.

3. Qualitative extrapolation. We try to predict outcomes for observations that come
from a different population. For example, suppose we used the models above to
predict body fat for women? This is a common problem because circumstances
are always changing and it’s hard to judge whether the new case is comparable.
We prefer experimental data to observational data but sometimes experience from
the laboratory does not transfer to real life.

4. Overconfidence due to overfitting. Data analysts search around for good models
for the data they have and often do too good a job in finding a fit. This can lead to
unrealistically small σ̂.

5. Black swans. Sometimes errors can appear to be normally distributed because
you haven’t seen enough data to be aware of extremes. This is of particular con-
cern in financial applications where stock prices are characterized by mostly small
changes (normally distributed) but with infrequent large changes (usually falls).

Exercises

1. For the prostate data, fit a model with lpsa as the response and the other vari-
ables as predictors.

(a) Suppose a new patient with the following values arrives:

lcavol lweight age lbph svi lcp

1.44692 3.62301 65.00000 0.30010 0.00000 -0.79851

gleason pgg45

7.00000 15.00000

Predict the lpsa for this patient along with an appropriate 95% CI.
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(b) Repeat the last question for a patient with the same values except that he is age
20. Explain why the CI is wider.

(c) For the model of the previous question, remove all the predictors that are not
significant at the 5% level. Now recompute the predictions of the previous
question. Are the CIs wider or narrower? Which predictions would you prefer?
Explain.

2. Using the teengamb data, fit a model with gamble as the response and the other
variables as predictors.

(a) Predict the amount that a male with average (given these data) status, income
and verbal score would gamble along with an appropriate 95% CI.

(b) Repeat the prediction for a male with maximal values (for this data) of status,
income and verbal score. Which CI is wider and why is this result expected?

(c) Fit a model with sqrt(gamble) as the response but with the same predictors.
Now predict the response and give a 95% prediction interval for the individual
in (a). Take care to give your answer in the original units of the response.

(d) Repeat the prediction for the model in (c) for a female with status=20,

income=1, verbal = 10. Comment on the credibility of the result.

3. The snail dataset contains percentage water content of the tissues of snails grown
under three different levels of relative humidity and two different temperatures.

(a) Use the command xtabs(water ~ temp + humid, snail)/4 to produce a
table of mean water content for each combination of temperature and humidity.
Can you use this table to predict the water content for a temperature of 25◦C
and a humidity of 60%? Explain.

(b) Fit a regression model with the water content as the response and the temper-
ature and humidity as predictors. Use this model to predict the water content
for a temperature of 25◦C and a humidity of 60%?

(c) Use this model to predict water content for a temperature of 30◦C and a hu-
midity of 75%? Compare your prediction to the prediction from (a). Discuss
the relative merits of these two predictions.

(d) The intercept in your model is 52.6%. Give two values of the predictors for
which this represents the predicted response. Is your answer unique? Do you
think this represents a reasonable prediction?

(e) For a temperature of 25◦C, what value of humidity would give a predicted
response of 80% water content.

4. The dataset mdeaths reports the number of deaths from lung diseases for men in
the UK from 1974 to 1979.

(a) Make an appropriate plot of the data. At what time of year are deaths most
likely to occur?

(b) Fit an autoregressive model of the same form used for the airline data. Are all
the predictors statistically significant?

(c) Use the model to predict the number of deaths in January 1980 along with a
95% prediction interval.
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(d) Use your answer from the previous question to compute a prediction and inter-
val for February 1980.

(e) Compute the fitted values. Plot these against the observed values. Note that
you will need to select the appropriate observed values. Do you think the
accuracy of predictions will be the same for all months of the year?

5. For the fat data used in this chapter, a smaller model using only age, weight,

height and abdom was proposed on the grounds that these predictors are either
known by the individual or easily measured.

(a) Compare this model to the full thirteen-predictor model used earlier in the
chapter. Is it justifiable to use the smaller model?

(b) Compute a 95% prediction interval for median predictor values and compare
to the results to the interval for the full model. Do the intervals differ by a
practically important amount?

(c) For the smaller model, examine all the observations from case numbers 25 to
50. Which two observations seem particularly anomalous?

(d) Recompute the 95% prediction interval for median predictor values after these
two anomalous cases have been excluded from the data. Did this make much
difference to the outcome?



Chapter 5

Explanation

Linear models can be used for prediction or explanation. Prediction is not simple but
it is conceptually easier than explanation. We have been deliberately vague about the
meaning of explanation. Sometimes explanation means causation but sometimes it
is just a description of the relationships between the variables. Causal conclusions
require stronger assumptions than those used for predictive models. This chapter
looks at the conditions necessary to conclude a causal relationship and what can be
said when we lack these conditions.

5.1 Simple Meaning

Let’s consider the Galápagos Islands example:

> data(gala, package="faraway")

> lmod <- lm(Species ~ Area + Elevation + Nearest + Scruz + Adjacent,

gala)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.06822 19.15420 0.37 0.7154

Area -0.02394 0.02242 -1.07 0.2963

Elevation 0.31946 0.05366 5.95 0.0000038

Nearest 0.00914 1.05414 0.01 0.9932

Scruz -0.24052 0.21540 -1.12 0.2752

Adjacent -0.07480 0.01770 -4.23 0.0003

n = 30, p = 6, Residual SE = 60.975, R-Squared = 0.77

What is the meaning of the coefficient for Elevation β̂ = 0.31946?
In a few examples, mostly from the physical sciences or engineering, β might

represent a real physical constant. For example, we might attach weights to a spring
and measure the extension. Here β̂1 will estimate a physical property of the spring. In
such examples, the model is a representation of a physical law. But for the Galápagos
data, our model has no such strong theoretical underpinning. It is an empirical model
that we hope is a good approximation to reality. β̂1 has no direct physical meaning
in this example.

Let’s start with a simple interpretation: unit increase in x1 will produce a change

of β̂1 in the response y. This statement is rather imprecise regarding the nature of the
relationship between x1 and y so let’s be more specfic: Compare two islands where
the second island has an elevation one meter higher than the first. We predict that the
second island will have 0.32 species more than the first. Let’s set aside the fact that
the number species can only take integer values because the model is only intended as

59
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an approximation. We could specify that the second island was 100m higher than the
first resulting in a predicted difference of about 32 species. There are more serious
problems with this interpretation.

Consider an alternative model for the number of species that uses only the eleva-
tion variable:

> sumary(lm(Species ~ Elevation, gala))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.3351 19.2053 0.59 0.56

Elevation 0.2008 0.0346 5.80 0.0000032

n = 30, p = 2, Residual SE = 78.662, R-Squared = 0.55

We can see that the predicted difference for an increase of 100m in elevation is now
about 20 species more, in contrast to the 32 found for the larger model. The different
values illustrate why we cannot interpret a regression coefficient for a given predictor
without reference to the other predictors included in the model. We show the two fits
for the elevation in Figure 5.1:

> plot(Species ~ Elevation, gala)

> abline(11.3,0.201)

> colMeans(gala)

Species Endemics Area Elevation Nearest Scruz Adjacent

85.233 26.100 261.709 368.033 10.060 56.977 261.098

> p <- predict(lmod, data.frame(Area=261.7, Elevation=gala$Elevation,

Nearest=10.06, Scruz = 56.98, Adjacent=261.1))

> i <- order(gala$Elevation)

> lines(gala$Elevation[i], p[i], lty=2)

To show the relationship between elevation and the response for the full five-predictor
model, we fix the other predictors at some typical values. We have chosen the means.
We then compute the predicted response for the observed values of elevation. Notice
that we needed to sort the predictor values (and the predictions in the same order) to
make sure that the line could be plotted. This is called an effect plot. It is a good way
of visualizing the meaning of the model for a given predictor. We can even compare
the effects to other models as we have done in the example.

We need to be more specific in our interpretation which should now read: a unit

increase in x1 with the other (named) predictors held constant will produce a change

of β̂1 in the response y. For the simple one-predictor model, a change in elevation
will also be associated with a change in the other predictors. This explains why the
two predictions are different.

Unfortunately, our revised interpretation merely brings to light further difficul-
ties. The idea of holding variables constant makes no sense for observational data
such as in our Galápagos example. These observables are not under our control. We
cannot change them except by some fantastic feat of engineering. There are also
likely to be other variables which we have not measured and may not be aware of
that also have some connection to the species diversity. We cannot possibly hold
these constant.

Furthermore, our explanation contains no notion of causation. We can predict
that taller islands have greater species diversity but we should not say altitude causes
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Figure 5.1 The fit for the simple model with just elevation as a predictor is shown as
the solid line. The predicted response as elevation varies and the other four predictors
held at their mean values is shown as a dashed line.

it. In the next section, we look at how causality might be established. For now we
are able to make predictions and compare these predictions to develop some insights.
The comparisons give some meaning to the regression coefficients but the informa-
tion is conditional and tentative.

5.2 Causality

The meaning of causality has occupied philosophers for centuries. We take the view
that the causal effect of an action is the difference between the outcomes where the
action was or was not taken. For example, suppose a study compares a treatment
with a control as applied to a set of patients. Let T = 0 for the control and T = 1 for
the treatment. Now let yT

i be the response for patient i when T applies. The causal
effect for patient i is then defined as

δi = y1
i − y0

i

Now the practical problem is that we usually cannot apply both treatment and control
at the same time. We only get to see one of the two outcomes: (y0

i ,y
1
i ). The outcome

we do not see is called the counterfactual. How near can we come to approximating
this quantity δi that we normally cannot observe?
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There are some difficulties with the counterfactual definition of causality. For
some variables, like a treatment in a clinical trial, it is easy to conceive of how a
different version of the treatment might have been applied or how we might change
future treatments. But some variables are difficult or impossible to actually change.
For example, suppose we are interested in the effect of gender on some outcome.
Although it seems reasonable to ask how an outcome might have differed if the sub-
ject was male rather than female, this is not a change that would be easy to make.
Similarly, with the Galápagos example, although it seems natural to think about how
physical geography might affect species diversity, we cannot actually change the
physical geography.

Although we cannot see both the outcome and the counterfactual outcome, we
may come close in some circumstances. For example, suppose the treatment is a
skin cream. We could apply the treatment to one side of the face and leave the other
as a control. Or we could apply the control first (which might be no treatment)
and then apply the cream later. We could then observe the difference in the post-
and pre-treatment responses. However, even in such cases, it is easy to see that
some assumptions will be necessary about how local the effect of the treatment is in
time and space. We will also need to be wary of external variables that might have
differential effects. If these assumptions are reasonable, then we may proceed but in
many other circumstances we will have doubts or it simply may not be possible to
apply more than one treatment to a unit.

5.3 Designed Experiments

In a designed experiment, we have control over T . For example, suppose we wish
to compare two physical exercise regimes. The experimental units are the people we
use for the study. There may be some other potential predictors which we can control
such as the amount of time spent excercising or the type of equipment used. Some
other predictors might not be controlled, but can be measured, such as the physical
characteristics of the people. Still other predictors may not be controlled or mea-
sured. We may know about these predictors or we may be unaware of them. Other
possible variables, such as the temperature in the room, might be held constant. Our
control over the conditions of the experiment allows us to make stronger conclusions
from the analysis. Randomization is the key to success.

Consider the easiest case where we will vary only T . We have some number of
subjects available for the experiment. Although we would like to know the individual
causal effects δi, this is not possible because only one level of T can be assigned to
a given subject at a given moment in time. However, we can aspire to estimate the
average value of δ over the group. We should randomly assign subjects to treatment
or control. Typically, we will do this so that there are an equal number of units in
the two groups but this is not essential. There are two compelling reasons to use
randomization.

We know that the subjects will vary in ways which may affect the response. Some
of these variables may not be obvious or measurable. Randomization is the only
reliable way to make sure that the two groups are not unbalanced in some way that
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favors either the treatment or the control. But this first argument for randomization
only ensures that the groups will be balanced on the average. It may well happen that
the particular realization of the randomization is unbalanced. We have a second and
more compelling argument to use. A permutation test (see Section 3.3) can be used
to test the null hypothesis of no difference between the groups. The justification of
the permutation test relies on the observed allocation being chosen randomly from all
possible allocations to groups. By using randomization, we validate this assumption.
It is true we could get an unbalanced allocation by chance but we also understand
that we will reject true null hypotheses by chance. So this possibility is built into
the reasoning behind the test. Remember that the permutation test tends to agree
with the normal-based test provided the linear model assumptions are justified. So
it is usually alright if we use the normal-based test rather than actually do the work
required for the permutation test.

The results of this test apply only to the subjects used in the experiment unless
we can reasonably claim that these subjects are representative of a larger population.
It is best if they are a random sample but this is rarely the case in practice so further
assumptions are necessary if we wish to make wider claims.

Now suppose we are aware that the experimental units differ in identifiable ways.
For example, some subjects may be male and others female. We may wish to incor-
porate this into the design by restricting the randomization. The obvious strategy is
to randomize separately the assignment of the treatments within males and females.
This will ensure that the groups are balanced by sex. In this example, sex is called a
blocking variable. Such designs are covered in detail in Chapter 17. In other cases,
there may be variables which are not properties of the experimental units (like sex)
but can be assigned (like time of exercise). In both situations, we will want to arrange
the design so that is orthogonal. This concept is explained in Section 2.11. This is
not essential for causal conclusions but it does greatly simplify them.

We have considered a binary treatment variable T but the same goes for con-
tinuous potential causal variables. Some additional assumptions may be necessary
regarding the functional form of the relationship — for example, that T has a linear
effect on the response.

5.4 Observational Data

Sometimes it is not practical or ethical to collect data from a designed experiment.
We cannot control the assignment of T and so we can only obtain observational data.
In some situations, we can control which cases we observe from those potentially
available. A sample survey is used to collect the data. A good survey design can
allow stronger and wider conclusions, but the data will still be observational.

On the 8th January 2008, primaries to select US presidential candidates were
held in New Hampshire. In the Democratic party primary, Hillary Clinton defeated
Barack Obama contrary to the expectations of pre-election opinion polls. Two differ-
ent voting technologies were used in New Hampshire. Some wards (administrative
districts) used paper ballots, counted by hand while others used optically scanned
ballots, counted by machine. Among the paper ballots, Obama had more votes than
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Clinton while Clinton defeated Obama on just the machine-counted ballots. Since
the method of voting should make no causal difference to the outcome, suspicions
were raised regarding the integrity of the election. The data was derived from Herron
et al. (2008) where a more detailed analysis may be found.

> data(newhamp, package="faraway")

> colSums(newhamp[newhamp$votesys == ’D’,2:3])

Obama Clinton

86353 96890

> colSums(newhamp[newhamp$votesys == ’H’,2:3])

Obama Clinton

16926 14471

We focus our interest on the voting system variable votesys which can either be ’D’
for digital or ’H’ for hand.. We use the proportion voting for Obama in each ward
as the response. Strictly speaking this is a binomial response and we should model
it accordingly. Nevertheless, the normal is a good approximation for the binomial
given a large enough sample and probabilities not close to zero or one. We have that
in this sample. Even so, a binomial variance is np(1− p) for proportion p and sample
size n. Both these vary in this example and so the assumption of equal variance is
violated. We can fix this problem by using weights as described in Section 8.2, but
this would make no appreciable difference to our discussion here so we ignore it.

Let us fit a linear model with just voting system as a predictor. We create an
indicator variable for this treatment where one represents hand and zero represents
digital voting:

> newhamp$trt <- ifelse(newhamp$votesys == ’H’,1,0)

> lmodu <- lm(pObama ~ trt, newhamp)

> sumary(lmodu)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.35252 0.00517 68.15 < 2e-16

trt 0.04249 0.00851 4.99 0.0000011

n = 276, p = 2, Residual SE = 0.068, R-Squared = 0.08

The model takes the form:

yi = β0 +β1Ti + εi

When digital voting is used, the predictor is set to zero and the predicted proportion
is therefore β̂0 = 35%. When hand voting is used, the prediction is β̂1 = 4% higher.
We see from the very small p-value of 0.0000011 that this difference is significantly
different. So we are quite sure that Obama received a significantly higher proportion
of the vote in the hand voting wards. The question is why? Did the voting method
have some causal effect on the outcome?

Suppose that the correct model involved some third variable Z and took the form:

yi = β∗
0 +β∗

1Ti +β∗
2Zi + εi

and suppose that this Z was linked to T by:

Zi = γ0 + γ1Ti + ε′i
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Z is sometimes called a confounding variable. Substituting the latter into the former,
we find the coefficient for T is β∗

1 +β∗
2γ1. Compare this to the β1 in the initial model

where we do not include Z. There are two ways in which the conclusion could be
the same for the two models. We could have β∗

2 = 0 when Z has no effect on the
response or γ1 = 0 where the treatment has no effect on Z. Otherwise Z will have
an effect on our conclusions and the initial model which excludes Z will provide a
biased estimate of the treatment effect. In a designed experiment, we have γ1 = 0 by
the randomization in the assignment of T .

Does such a third variable Z exist for the New Hampshire voting example? Con-
sider the proportion of votes for Howard Dean, a Democratic candidate in the previ-
ous presidential campaign in 2004. We add this term to the model:

> lmodz <- lm(pObama ~ trt + Dean , newhamp)

> sumary(lmodz)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.22112 0.01125 19.65 <2e-16

trt -0.00475 0.00776 -0.61 0.54

Dean 0.52290 0.04165 12.55 <2e-16

n = 276, p = 3, Residual SE = 0.054, R-Squared = 0.42

We see that the effect of the voting system is no longer statistically significant with a
p-value of 0.54. The proportion voting for Dean shows a positive relationship to the
proportion voting for Obama. We can also see that this third variable is related to our
“treatment” variable:

> sumary(lm(Dean ~ trt, newhamp))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.25129 0.00599 41.99 <2e-16

trt 0.09034 0.00985 9.18 <2e-16

n = 276, p = 2, Residual SE = 0.079, R-Squared = 0.24

We can see that there is an active confounder in this situation. What should we
conclude? In the next section, we show how we can use conterfactual notions to
clarify the effect of the voting system on preferences for Obama.

5.5 Matching

People vote for candidates based on political and character preferences. The pro-
portion of voters choosing Howard Dean in the previous Democratic primary tells
us something about the aggregate preferences of the voters in each ward in the 2008
primary. Suppose that we had been allowed to do an experiment in 2008 and we were
permitted to assign the voting systems to the wards. How would we do this?

Consider a clinical trial where we compare a treatment to a control. We have a
pool of available subjects who differ in identifiable ways such as sex, age, overall
health condition and so on that might affect the response. We could simply randomly
divide the pool in two, assigning one group to the treatment and one to the control.
But the random division could be unbalanced with respect to the confounders. Al-
though this possibility is built into the testing procedure, the approach does not make
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the best use of the available information. Often a better approach is to form matched
pairs where the two members of each pair are as alike as possible with respect to
the confounders. For example, we would match a healthy older man with another
healthy older man. Within the pairs, treatment and control are randomly assigned.
We can then determine the effect of the treatment by looking at the difference in the
response for each pair. We do this secure in the knowledge that we have adjusted
for the effect of confounding by balancing these differences between treatment and
control.

Let’s return to the New Hampshire primary and apply the same procedure. We
would form matched pairs based on similarity of proportion formerly supporting
Dean. Within each pair, we would make a random assignment. Unfortunately, in
real life, we cannot make the random assignment but we can find pairs of wards with
similar values of Dean proportion where one uses hand voting and the other uses
digital.

We use the Matching package of (Sekhon 2011) to find the matches:

> require(Matching)

> set.seed(123)

> mm <- GenMatch(newhamp$trt, newhamp$Dean, ties=FALSE, caliper=0.05,

pop.size=1000)

> head(mm$matches[,1:2])

[,1] [,2]

[1,] 4 218

[2,] 17 170

[3,] 18 264

[4,] 19 91

[5,] 21 233

[6,] 22 185

> newhamp[c(4,218),c(’Dean’,’pObama’,’trt’)]

Dean pObama trt

CenterHarbor 0.28495 0.34328 1

Northwood 0.28264 0.33688 0

Because Dean is a continuous variable, it is unlikely that we will find exact matches
so we need to specify how a close a match is acceptable. A caliper of 0.05 means that
we accept anything within 0.05 standard deviations of Dean. For simplicity, we also
specify that no ties will be allowed so that each treatment ward will be matched to
just one control. The matching method uses a genetic algorithm which has a random
component. For this reason, we have set the random number generator seed so you
will see the same results if you repeat this. The genetic algorithm functions more
effectively with a larger ’population size’ so this should be set as high as possible
without causing the computation to take too long.

We examine the first few pairs of matches and see that first pair uses cases 4 and
218 which we look at specifically. For this pair of treatment and control, we see that
the value of Dean is very similar.

We show all the matches in Figure 5.2. Notice that some wards go unmatched
because there is not a close match of the other type available.

> plot(pObama ~ Dean, newhamp, pch=trt+1)

> with(newhamp,segments(Dean[mm$match[,1]],pObama[mm$match[,1]],Dean[

mm$match[,2]],pObama[mm$match[,2]]))
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Figure 5.2 On the left, we show the matched pairs hand voting wards are shown as
triangles and digital voting wards as circles. Matched pair are linked by a line. On
the right, we show the matched pair differences

We compute the difference between the pairs and perform a one sample t-test. We
have also plotted the differences in Figure 5.2.

> pdiff <- newhamp$pObama[mm$matches[,1]] - newhamp$pObama[mm$matches

[,2]]

> t.test(pdiff)

One Sample t-test

data: pdiff

t = -1.5907, df = 86, p-value = 0.1154

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-0.0303409 0.0033683

sample estimates:

mean of x

-0.013486

> plot(pdiff ~ newhamp$Dean[mm$matches[,1]], xlab="Dean", ylab="Hand-

Digital")

> abline(h=0)

We see that the differences are not statistically significantly different from zero. This
is confirmed by the plot where we can see that the matched pairs show no clear
preference for hand or digital voting. Furthermore, the difference doesn’t appear to
depend on the Dean vote.

We were not able to do an experiment and we certainly were not able to view
the counterfactual, but we achieved the next best thing. We have matched wards with
similar political outlooks by using the prior Dean vote proportion. One ward has used
digital voting and the other has used the manual method. Based on this comparison,
we see no significant difference between the two methods. The observed unadjusted
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difference is because voters inclined to pick Obama are also more likely to be present
in hand voting wards

Now we haven’t disproved any conspiracy theories about fixed votes but we have
come up with a more plausible explanation. We do not claim our new explanation is
necessarily true because there may be yet further variables that drive the relationship.
Nevertheless, it is a basic principle of science that we should prefer simpler theories
provided they are tenable.

There is much more to matching. We have presented a simple approach but there
are better ways to do the analysis and more sophisticated ways to do the matching
in the presence of covariates but now we return to our earlier linear modeling and
consider how this relates to the matched analysis.

5.6 Covariate Adjustment

We can display the two earlier linear models for the proportion voting for Obama.
First the unadjusted model which does not include Dean:

> plot(pObama ~ Dean, newhamp, pch=trt+1)

> abline(h=c(.353, 0.353+0.042),lty=1:2)

We can see the data and fitted models in Figure 5.3. The two horizontal lines repre-
senting the mean response in the two groups show a clear difference. We can add the
two lines that represent the fitted model for the two levels of voting mechanism:

> abline(0.221, 0.5229)

> abline(0.221-0.005, 0.5229, lty=2)

Let’s also add the matched pairs:

> with(newhamp,segments(Dean[mm$match[,1]],pObama[mm$match[,1]],Dean[

mm$match[,2]],pObama[mm$match[,2]],col=gray(0.75)))

If we consider the expected response for a fixed value of Dean, the difference be-
tween digital and hand is given by the vertical distance between the two sloped lines.
Compare this to the matching approach where we find pairs of wards, one digital,
one hand, which have almost the same value of Dean. Each pair represents a local
realization of that vertical difference. When we average these pairwise differences,
we also estimate the vertical difference. Thus matching on a covariate and fitting a
linear model where we adjust for the covariate by including it in the model are two
ways to estimate the same thing.

Both approaches to drawing conclusions from observation studies are useful. The
covariate adjustment method, sometimes called “controlling for a covariate” is easier
to use and extends well to multiple confounders. However, it does require that we
specify the functional form of the covariate in the model in an appropriate way. In
our example, it is clear from the plots that a linear form is suitable but in higher
dimensions this can be harder to check. The matching approach is more robust in that
it does not require we specify this functional form. In our example, the two groups
overlapped substantially so that it was possible to obtain a large number of matched
pairs. When there is less overlap, the covariate adjustment approach can still make
full use of the data although it is vulnerable to the dangers of extrapolation when
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Figure 5.3 Linear models for Obama proportion. The solid lines represent the dig-
ital voting wards while the dashed lines represent the hand voting wards. The hor-
izontal lines result from an unadjusted model while the sloped lines result from the
model that includes the proportion voting for Dean. Matched pairs are linked by gray
lines.

making comparisons. In the rest of this book, we shall generally use the covariate
adjustment approach but the matching approach should not be discounted and can
provide valuable insights.

5.7 Qualitative Support for Causation

In observational studies, there is a limit to what can be achieved with statistical ma-
nipulations. Sir Bradford Hill was a central figure in establishing the causal link
between smoking and lung cancer. In Hill (1965) he laid out several general consid-
erations that can reinforce the case for a causal link:

Strength We do not mean a high correlation or a small p-value but that β̂ is large
in practical terms. Known covariates can be adjusted for, while unobserved and
unsuspected confounding variables could easily lead to small effects. It is less
credible that some variable whose existence was previously unknown could coun-
teract a large effect.

Consistency A similar effect has been found for different subjects under different
circumstances at different times and places. If smokers, male and female, Argen-
tinian and Swedish, both now and in the past tend to get lung cancer, then the
evidence is stronger. Replication by independent research groups is particularly
important in establishing causation.

Specificity The supposed causal factor is associated mostly with a particular re-
sponse and not with a wide range of other possible responses. If a particular lung
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disease is only prevalent in workers in a particular industry and those workers do
not suffer from other problems any more than other industrial workers, then the
case is stronger.

Temporality The supposed causal factor is determined or fixed before the outcome
or response is generated. Sometimes it is not clear whether X causes Y or vice
versa. It helps if X happens before Y if we want to establish the direction of the
effect.

Gradient The response increases (or decreases) monotonely as the supposed causal
variable increases. In other words, “the more you do it, the worse it gets.” The
phenomenom of hormesis is an exception. For example, a low consumption of
alcohol may have health benefits relative to abstinence but drinking too much
becomes progressively more harmful.

Plausibility There is a credible theory suggesting a causal effect. The observational
study might be part of an effort to support a particular theory.

Experiment A natural experiment exists where subjects have apparently been ran-
domly assigned values of the causal variable. For example, US states have dif-
ferent laws that have differential effects on the causal factor. Sometimes it is
reasonable to view this as a form of random assignment. Generally, we conduct
observational studies because experiments are not practical but sometimes it is
possible to do related experiments. For example, animal experiments might tell
us something about effects for humans.

Not all of these might apply, but causation might still be present. All of these
might apply, but we may not be sure of causation. Nevertheless, these considerations
do add to the weight of evidence even though we cannot express the effect numeri-
cally.

Exercises

1. Use the teengamb data with gamble as the response. We focus on the effect of
sex on the response and so we include this predictor in all models. There are
eight possible models that include all, some, or none of the other three predictors.
Fit all these models and report on the coefficient and significance of sex in each
case. Comment on the stability of the effect.

2. Use the odor dataset with odor as the response and temp as a predictor. Consider
all possible models that also include all, some or none of the other two predictors.
Report the coefficient for temperature, its standard error, t-statistic and p-value in
each case. Discuss what stays the same, what changes and why. Which model is
best?

3. Use the teengamb data for this question.

(a) Make a plot of gamble on income using a different plotting symbol depending
on the sex.

(b) Fit a regression model with gamble as the response and income and sex as
predictors. Display the regression fit on the plot.
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(c) Use the Matching package to find matches on sex. Use the same parameters
as in the chapter. How many matched pairs were found? How many cases were
not matched?

(d) Make a plot showing which pairs were matched.

(e) Compute the differences in gamble for the matched pairs. Is there a significant
non-zero difference?

(f) Plot the difference against income. In what proportion of pairs did the female
gamble more than the male?

(g) Do the conclusions from the linear model and the matched pair approach agree?

4. Thirty-nine MBA students were asked about happiness and how this related to
their income and social life. The data are found in happy.

(a) Fit a regression model with happy as the response and the other four variables
as predictors. Give an interpretation for the meaning of the love coefficient.

(b) The love predictor takes three possible values but mostly takes the value 2 or
3. Create a new predictor called clove which takes the value zero if love is
2 or less. Use this new predictor to replace love in the regression model and
interpret the meaning of the corresponding coefficient. Do the results differ
much from the previous model?

(c) Fit a model with only clove as a predictor and interpret the coefficient. How
do the results compare to the previous outcome.

(d) Make a plot of happy on work, distinguishing the value clove by using a
plotting symbol. Use jittering to distinguish overplotted points.

(e) Use the command xtabs( ∼ clove + work, happy) to produce a crosstab-
ulation. If we wanted to match pairs on clove with the same value of work,
what is the maximum number of 1 to 1 matches we could achieve?

(f) For each value of work, compute the mean difference in happy for the two
levels of clove. Compute an average of these differences. Which coefficient
computed earlier would be the most appropriate comparison for this average?



Chapter 6

Diagnostics

The estimation of and inference from the regression model depend on several as-
sumptions. These assumptions should be checked using regression diagnostics be-
fore using the model in earnest. We divide the potential problems into three cate-
gories:

Error We have assumed that ε ∼ N(0,σ2I) or in words, that the errors are indepen-
dent, have equal variance and are normally distributed.

Model We have assumed that the structural part of the model, Ey = Xβ, is correct.

Unusual observations Sometimes just a few observations do not fit the model. These
few observations might change the choice and fit of the model.

Diagnostic techniques can be graphical, which are more flexible but harder to
definitively interpret, or numerical, which are narrower in scope, but require less
intuition. When searching for a good model, the first one we try may prove to be in-
adequate. Regression diagnostics often suggest specific improvements, which means
model building is an iterative and interactive process. It is quite common to repeat
the diagnostics on a succession of models.

6.1 Checking Error Assumptions

We wish to check the independence, constant variance and normality of the errors,
ε. The errors are not observable, but we can examine the residuals, ε̂. These are not
interchangeable with the error, as they have somewhat different properties. Recall
that ŷ = X(XT X)−1XT y = Hy where H is the hat matrix, so that :

ε̂ = y− ŷ = (I −H)y = (I −H)Xβ+(I −H)ε = (I −H)ε

Therefore, var ε̂ = var (I −H)ε = (I −H)σ2 assuming that var ε = σ2I. We see that
although the errors may have equal variance and be uncorrelated, the residuals do
not. Fortunately, the impact of this is usually small and diagnostics can reasonably
be applied to the residuals in order to check the assumptions on the error.

6.1.1 Constant Variance

It is not possible to check the assumption of constant variance just by examining
the residuals alone — some will be large and some will be small, but this proves
nothing. We need to check whether the variance in the residuals is related to some
other quantity.

73
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The most useful diagnostic is a plot of ε̂ against ŷ. If all is well, you should
see constant symmetrical variation (known as homoscedasticity) in the vertical (ε̂)
direction. Nonconstant variance is also called heteroscedasticity. Nonlinearity in the
structural part of the model can also be detected in this plot. In Figure 6.1, three
distinct cases are illustrated.
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Figure 6.1 Residuals vs. fitted plots — the first suggests no change to the current
model while the second shows nonconstant variance and the third indicates some
nonlinearity, which should prompt some change in the structural form of the model.

It is also worthwhile to plot ε̂ against xi for potential predictors that are in the
current model as well as those not used. The same considerations in these plots
should apply. For plots of residuals against predictors not in the model, any observed
structure may indicate that this predictor should be included in the model.

We illustrate this using the savings dataset:

> data(savings,package="faraway")

> lmod <- lm(sr ~ pop15+pop75+dpi+ddpi,savings)

The basic plot, as seen in the first panel of Figure 6.2, shows residuals against fitted
values. It is worth adding the ε̂ = 0 line to help with the interpretation.

> plot(fitted(lmod),residuals(lmod),xlab="Fitted",ylab="Residuals")

> abline(h=0)

We see no cause for alarm in this plot. If we would like to examine the constant
variance assumption more closely, it helps to plot

√

|ε̂| against ŷ. Once we have ex-
cluded the possibility of non-linearity in the first plot and the residuals look roughly
symmetric, then we can effectively double the resolution by considering the absolute
value of the residuals. For truly normal errors, |ε̂| would follow what is known as
a half-normal distribution (since it has a density which is simply the upper half of a
normal density). Such a distribution is quite skewed, but this effect can be reduced
by the square root transformation.

> plot(fitted(lmod),sqrt(abs(residuals(lmod))), xlab="Fitted",ylab=

expression(sqrt(hat(epsilon))))
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The plot, as seen in the second panel of Figure 6.2, shows approximately constant
variation. A quick numerical test to check nonconstant variance can be achieved
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Figure 6.2 Residual vs. fitted plot for the savings data is shown on the left and the
corresponding

√

|ε̂| against ŷ on the right. Both plots are satisfactory.

using this regression:

> sumary(lm(sqrt(abs(residuals(lmod))) ~ fitted(lmod)))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.1622 0.3479 6.22 1.2e-07

fitted(lmod) -0.0614 0.0348 -1.77 0.084

n = 50, p = 2, Residual SE = 0.634, R-Squared = 0.06

This test is not quite right, as some weighting should be used and the degrees of
freedom should be adjusted, but there does not seem to be a clear problem with
nonconstant variance. Another difficulty is that it only tests for a linear trend in the
variation. A formal test may be good at detecting a particular kind of nonconstant
variance, but have no power to detect another. Residual plots are more versatile
because unanticipated problems may be spotted.

A formal diagnostic test may have a reassuring aura of exactitude about it, but
one needs to understand that any such test may be powerless to detect problems of
an unsuspected nature. Graphical techniques are usually more effective at revealing
structure that you may not have suspected. Of course, sometimes the interpretation of
the plot may be ambiguous, but at least we can be sure that nothing is seriously wrong
with the assumptions. For this reason, we usually prefer a graphical approach to
diagnostics, with formal tests reserved for the clarification of indications discovered
in the plots.

It is often hard to judge residual plots without prior experience so it is helpful
to generate some artificial plots where the true relationship is known. The following
four for loops show:
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1. Constant variance

2. Strong nonconstant variance

3. Mild nonconstant variance

4. Nonlinearity

> par(mfrow=c(3,3))

> n <- 50

> for(i in 1:9) {x <- runif(n) ; plot(x,rnorm(n))}

> for(i in 1:9) {x <- runif(n) ; plot(x,x*rnorm(n))}

> for(i in 1:9) {x <- runif(n) ; plot(x,sqrt((x))*rnorm(n))}

> for(i in 1:9) {x <- runif(n) ; plot(x,cos(x*pi/25)+rnorm(n,sd=1))}

> par(mfrow=c(1,1))

Repeat, varying the sample size and sd to get an idea of the how plots might vary even
when we know the true data generating mechanism. Type help(Distributions) to
see how to generate data from different distributions to get an even broader picture.

The artificial generation of plots is a good way to “calibrate” diagnostic plots. It
is often hard to judge whether an apparent feature is real or just random variation.
Repeated generation of plots under a known model, where there is or is not a violation
of the assumption that the diagnostic plot is designed to check, is helpful in making
this judgment.

Now look at some residuals against predictor plots for the savings data:

> plot(savings$pop15,residuals(lmod), xlab="Population under 15",ylab

="Residuals")

> abline(h=0)

> plot(savings$pop75,residuals(lmod), xlab="Population over 75",ylab

="Residuals")

> abline(h=0)

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●

25 30 35 40 45

−
5

0
5

1
0

Population under 15

R
e

si
d

u
a

ls

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●●

1 2 3 4

−
5

0
5

1
0

Population over 75

R
e

si
d

u
a

ls

Figure 6.3 Residuals vs. predictor plots for the savings data.

The plots may be seen in Figure 6.3. Two groups can be seen in the first plot. Let’s
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compare and test the variances in these groups. Given two independent samples from
normal distributions, we can test for equal variance using the test statistic of the ratio
of the two variances. The null distribution is an F with degrees of freedom given by
the two samples:

> var.test(residuals(lmod)[savings$pop15>35], residuals(lmod)[savings$

pop15<35])

F test to compare two variances

data: residuals(lmod)[savings$pop15 > 35] and residuals(lmod)[savings

$pop15 < 35]

F = 2.7851, num df = 22, denom df = 26, p-value = 0.01358

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

1.2410 6.4302

sample estimates:

ratio of variances

2.7851

A significant difference is seen.
When problems are seen in these diagnostic plots, some modification of the

model is suggested. If some non-linearity is observed, perhaps in conjunction with
non-constant variance, a transformation of the variables should be considered. The
shape of the plot may suggest the transformation to be used. See Chaper 9 for more.

If the problem is solely one of non-constant variance with no suggestion of non-
linearity then the use of weighted least squares (see Section 8.1) may be appropriate.
Alternatively, when non-constant variance is seen in the plot of ε̂ against ŷ, a transfor-
mation of the response y to h(y) where h() can be chosen so that var h(y) is constant.
To see how to choose h consider this expansion:

h(y) = h(Ey)+(y−Ey)h′(Ey)+ · · ·
var h(y) = 0+h′(Ey)2var y+ · · ·

We ignore the higher order terms. For var h(y) to be constant we need:

h′(Ey) ∝ (var y)−1/2

which suggests:

h(y) =
∫

dy
√

var y
==

∫
dy

SDy

For example if var y = var ε ∝ (Ey)2, then h(y) = logy is suggested while if var ε ∝
(Ey), then h(y) =

√
y.

In practice, you need to look at the plot of the residuals and fitted values and
take a guess at the relationship. When looking at the plot, we see the change in
SD(y) rather than var y, because the SD is in the units of the response. If your initial
guess is wrong, you will find that the diagnostic plot in the transformed scale is
unsatisfactory. You can simply try another transformation — some experimentation
is sensible.
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Sometimes it can be difficult to find a good transformation. For example, when
yi ≤ 0 for some i, square root or log transformations will fail. You can try, say,
log(y+δ), for some small δ but this makes interpretation difficult.

Consider the residual vs. fitted plot for the Galápagos data:

> data(gala, package="faraway")

> lmod <- lm(Species ~ Area + Elevation + Scruz + Nearest + Adjacent,

gala)

> plot(fitted(lmod),residuals(lmod),xlab="Fitted",ylab="Residuals")

> abline(h=0)

We can see non-constant variance (and evidence of non-linearity) in the first plot of
Figure 6.4. The square root transformation is often appropriate for count response
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Figure 6.4 Residual vs. fitted plots for the Galápagos data before (left) and after
(right) a square root transformation of the response.

data. The Poisson distribution is a good model for counts and that distribution has
the property that the mean is equal to the variance, thus suggesting the square root
transformation. We try that:

> lmod <- lm(sqrt(Species) ~ Area + Elevation + Scruz + Nearest +

Adjacent, gala)

> plot(fitted(lmod),residuals(lmod),xlab="Fitted",ylab="Residuals")

> abline(h=0)

We see in the second plot of Figure 6.4 that the variance is now constant and the
signs of non-linearity have gone. Our guess at a variance stabilizing transformation
worked out here, but had it not, we could always have tried something else.

6.1.2 Normality

The tests and confidence intervals we use are based on the assumption of normal
errors. The residuals can be assessed for normality using a Q–Q plot. This compares
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the residuals to “ideal” normal observations. We plot the sorted residuals against
Φ−1( i

n+1 ) for i = 1, . . . ,n. Let’s try it out on the savings data:

> lmod <- lm(sr ~ pop15+pop75+dpi+ddpi,savings)

> qqnorm(residuals(lmod),ylab="Residuals",main="")

> qqline(residuals(lmod))
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Figure 6.5 Normality checks for the savings data. A Q–Q plot is shown on the left
and a histrogram on the right.

See the first plot of Figure 6.5 — qqline() adds a line joining the first and third
quartiles. It is not influenced by outliers. Normal residuals should follow the line
approximately. Here, the residuals look normal.

Histograms and boxplots are not suitable for checking normality:

> hist(residuals(lmod),xlab="Residuals",main="")

The histogram seen in the second plot of Figure 6.5 does not have the expected bell
shape. This is because we must group the data into bins. The choice of width and
placement of these bins is problematic and the plot here is inconclusive.

We can get an idea of the variation to be expected in Q–Q plots in the following
simulation. We generate data from different distributions:

1. Normal

2. Lognormal — an example of a skewed distribution

3. Cauchy — an example of a long-tailed (leptokurtic) distribution

4. Uniform — an example of a short-tailed (platykurtic) distribution

We generate nine replicates at a time from each of these test cases:

> par(mfrow=c(3,3))

> n <- 50
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> for(i in 1:9) {x <- rnorm(n); qqnorm(x); qqline(x)}

> for(i in 1:9) {x <- exp(rnorm(n)); qqnorm(x); qqline(x)}

> for(i in 1:9) {x <- rcauchy(n); qqnorm(x); qqline(x)}

> for(i in 1:9) {x <- runif(n); qqnorm(x); qqline(x)}

> par(mfrow=c(1,1))

In Figure 6.6, you can see examples of the latter three cases:
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Figure 6.6 Q–Q plots of simulated data for, respectively, a skewed distribution, a
long-tailed distribution and a short-tailed distribution.

It is not always easy to diagnose the problem in Q–Q plots. Sometimes extreme
cases may be a sign of a long-tailed error like the Cauchy distribution or they can
be just outliers. If removing such observations just results in other points becoming
more prominent in the plot, the problem is likely due to a long-tailed error.

When the errors are not normal, least squares estimates may not be optimal.
They will still be best linear unbiased estimates, but other robust estimators may be
more effective. Also tests and confidence intervals are not exact. However, we can
appeal to the central limit theorem which will ensure that the tests and confidence
intervals constructed will be increasingly accurate approximations for larger sample
sizes. Hence, we can afford to ignore the issue, provided the sample is sufficiently
large or the violation not particularly severe.

When non-normality is found, the resolution depends on the type of problem
found. For short-tailed distributions, the consequences of non-normality are not se-
rious and can reasonably be ignored. For skewed errors, a transformation of the
response may solve the problem. For long-tailed errors, we might just accept the
non-normality and base the inference on the assumption of another distribution or
use resampling methods such as the bootstrap or permutation tests. Alternatively,
use robust methods, which give less weight to outlying observations but may again
require resampling for the inference.

Also you may find that other diagnostics suggest changes to the model. In this
changed model, the problem of non-normal errors might not occur so it is best to
address any non-linearity and non-constant variance problems first.

The Shapiro–Wilk test is a formal test for normality:
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> shapiro.test(residuals(lmod))

Shapiro -Wilk normality test

data: residuals(g)

W = 0.987, p-value = 0.8524

The null hypothesis is that the the residuals are normal. Since the p-value is large,
we do not reject this hypothesis.

We can only recommend this in conjunction with a Q–Q plot at best. The p-value
is not very helpful as an indicator of what action to take. With a large dataset, even
mild deviations from non-normality may be detected, but there would be little reason
to abandon least squares because the effects of non-normality are mitigated by large
sample sizes. For smaller sample sizes, formal tests lack power.

6.1.3 Correlated Errors

It is difficult to check for correlated errors in general because there are just too many
possible patterns of correlation that may occur. We do not have enough informa-
tion to make any reasonable check. But some types of data have a structure which
suggests where to look for problems. Data collected over time may have some corre-
lation in successive errors. Spatial data may have correlation in the errors of nearby
measurements. Data collected in blocks may show correlated errors within those
blocks.

We illustrate the methods with an example of some temporal data. In general, the
methods of time series analysis can be used but we will use methods more specific
to the regression diagnostics problem. A combination of graphical and numerical
methods is available.

The issue of global warming has attracted significant interest in recent years.
Reliable records of annual temperatures taken with thermometers are only available
back to the 1850s. Information about temperatures prior to this can be extracted from
proxies such as tree rings. We can build a linear model to predict temperature since
1856 and then subsequently use this to predict earlier temperatures based on proxy
information. The data we use here has been derived from Jones and Mann (2004). I
have selected only proxies with mostly complete data. I have imputed some missing
values and used some smoothing for ease of demonstration. Researchers seriously
interested in historial climate should refer to the original data — see the R help page
for details.

We start by fitting a model with the temperature as the response and the eight
proxies as predictors. A full analysis would involve other steps but we focus on the
issue of correlated errors here.

> data(globwarm,package="faraway")

> lmod <- lm(nhtemp ~ wusa + jasper + westgreen + chesapeake +

tornetrask + urals + mongolia + tasman, globwarm)

There are missing values for nhtemp prior to 1856. The default behavior in R when
performing a regression with missing values is to omit any case that contains a miss-
ing value. Hence this model uses only data from 1856 through 2000.
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For temporal data such as these, it is sensible to plot the residuals against the time
index. The plot is shown in the first panel of Figure 6.7. We have specified a missing
valueless version of the data frame so that the years match up to the residuals.

> plot(residuals(lmod) ~ year, na.omit(globwarm), ylab="Residuals")

> abline(h=0)

If the errors were uncorrelated, we would expect a random scatter of points above
and below the ε= 0 line. In this plot, we see long sequences of points above or below
the line. This is an indication of positive serial correlation. An alternative approach
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Figure 6.7 Diagnostic plots for correlated errors in the air quality data.

to checking for serial correlation is to plot successive pairs of residuals which we see
in the second panel of Figure 6.7.

> n <- length(residuals(lmod))

> plot(tail(residuals(lmod),n-1) ~ head(residuals(lmod),n-1), xlab=

expression(hat(epsilon)[i]),ylab=expression(hat(epsilon)[i+1]))

> abline(h=0,v=0,col=grey(0.75))

We can see a positive correlation again indicating positive serial correlation. If you
have some doubt as to the significance of the correlation, we can model it directly:

> sumary(lm(tail(residuals(lmod),n-1) ~ head(residuals(lmod),n-1) -1))

Estimate Std. Error t value Pr(>|t|)

head(residuals(lmod), n - 1) 0.5951 0.0693 8.59 1.4e-14

n = 144, p = 1, Residual SE = 0.139, R-Squared = 0.34

We omitted the intercept term because the residuals have mean zero. The serial
correlation is confirmed. You can plot more than just successive pairs if you suspect
a more complex dependence.
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The Durbin–Watson test uses the statistic:

DW =
∑n

i=2(ε̂i − ε̂i−1)2

∑n
i=1 ε̂2

i

The null hypothesis is that the errors are uncorrelated. The null distribution based
on the assumption of uncorrelated errors follows a linear combination of χ2 distribu-
tions. The test is implemented in the lmtest package. The run test is an alternative.

We can compute the Durbin–Watson statistic:

> require(lmtest)

> dwtest(nhtemp ~ wusa + jasper + westgreen + chesapeake + tornetrask

+ urals + mongolia + tasman, data=globwarm)

Durbin -Watson test

data: nhtemp ~ wusa + jasper + westgreen + chesapeake + tornetrask +

urals + mongolia + tasman

DW = 0.8166, p-value = 1.402e-15

alternative hypothesis: true autocorrelation is greater than 0

where the p-value indicates strong evidence of serial correlation. In this example,
we are not surprised to see that the errors are correlated. We do not expect that the
proxies will model temperature perfectly and that higher or lower temperatures in
one year might carry over to the next.

Sometimes, serial correlation can be caused by a missing covariate. For example,
suppose that there is a quadratic relation between a predictor and the response but we
use only a linear term in that predictor. The diagnostics will show serial correlation
in the residuals but the real source of the problem is the missing quadratic term.

Although it is possible that difficulties with correlated errors can be removed by
changing the structural part of the model, sometimes we must build the correlation
directly into the model. This can be achieved using the method of generalized least
squares — see Chapter 8.

6.2 Finding Unusual Observations

We may find that some observations do not fit the model well. Such points are called
outliers. Other observations change the fit of the model in a substantive manner.
These are called influential observations. It is possible for a point to have both these
characteristics. A leverage point is extreme in the predictor space. It has the potential
to influence the fit, but does not necessarily do so. It is important to first identify such
points. Deciding what to do about them can be difficult.

6.2.1 Leverage

hi = Hii are called leverages and are useful diagnostics. Since var ε̂i = σ2(1−hi), a
large leverage, hi, will make var ε̂i small. The fit will be attracted toward yi. Large
values of hi are due to extreme values in the X-space. hi corresponds to a (squared)
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Mahalanobis distance defined by X which is (x− x̄)T Σ̂−1(x− x̄) where Σ̂ is the es-
timated covariance of X . The value of hi depends only on X and not y so leverages
contain only partial information about a case.

Since ∑i hi = p, an average value for hi is p/n. A rough rule is that leverages of
more than 2p/n should be looked at more closely.

We will use the savings dataset as an example here:

> lmod <- lm(sr ~ pop15 + pop75 + dpi + ddpi, savings)

> hatv <- hatvalues(lmod)

> head(hatv)

Australia Austria Belgium Bolivia Brazil Canada

0.067713 0.120384 0.087482 0.089471 0.069559 0.158402

> sum(hatv)

[1] 5

We verify that the sum of the leverages is indeed five — the number of parameters in
the model.

Without making assumptions about the distributions of the predictors that would
often be unreasonable, we cannot say how the leverages would be distributed. Nev-
ertheless, we would like to identify unusually large values of the leverage. The half-
normal plot is a good way to do this.

Half-normal plots are designed for the assessment of positive data. They could be
used for |ε̂|, but are more typically useful for diagnostic quantities like the leverages.
The idea is to plot the data against the positive normal quantiles.

The steps are:

1. Sort the data: x[1] ≤ . . .x[n].

2. Compute ui = Φ−1( n+i
2n+1 ).

3. Plot x[i] against ui.

We do not usually expect a straight line relationship since we do not necessarily
expect a positive normal distribution for quantities like leverages. We are looking for
outliers, which will be apparent as points that diverge substantially from the rest of
the data.

We demonstrate the half-normal plot on the leverages for the savings data:

> countries <- row.names(savings)

> halfnorm(hatv,labs=countries,ylab="Leverages")

The plot is the first shown in Figure 6.8. I have plotted the country name instead of
just a dot for the largest two cases, respectively, to aid identification. Leverages can
also be used in scaling residuals. We have var ε̂i = σ2(1−hi) which suggests the use
of:

ri =
ε̂i

σ̂
√

1−hi

These are called standardized residuals. If the model assumptions are correct,
var ri = 1 and corr(ri,r j) tend to be small. Standardized residuals are sometimes
preferred in residual plots, as they have been standardized to have equal variance.
Standardization can only correct for the natural non-constant variance in residuals
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Figure 6.8 Half-normal plots for the leverages and a Q–Q plot for the standardized
residuals.

when the errors have constant variance. If there is some underlying heteroscedastic-
ity in the errors, standardization cannot correct for it. We now compute and plot the
standardized residuals for the savings data:

> qqnorm(rstandard(lmod))

> abline(0,1)

We have displayed the Q–Q plot of the standardized residuals in the second plot of
Figure 6.8. Because these residuals have been standardized, we expect the points to
approximately follow the y = x line if normality holds. Another advantage of the
standardized form is that we can judge the size easily. An absolute value of 2 would
be large but not exceptional for a standardized residual whereas a value of 4 would
be very unusual under the standard normal.

Some authors recommend using standardized rather than raw residuals in all di-
agnostic plots. However, in many cases, the standardized residuals are not very dif-
ferent from the raw residuals except for the change in scale. Only when there are
unusually large leverages will the differences be noticeable in the shape of the plot.

6.2.2 Outliers

An outlier is a point that does not fit the current model well. We need to be aware of
such exceptions. An outlier test is useful because it enables us to distinguish between
truly unusual observations and residuals that are large, but not exceptional. Outliers
may or may not affect the fit substantially. We simulate some data to illustrate the
possibilities:

> set.seed(123)

> testdata <- data.frame(x=1:10,y=1:10+rnorm(10))
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> lmod <- lm(y ~ x, testdata)

The first example adds an outlier with a central predictor value:

> p1 <- c(5.5,12)

> lmod1 <- lm(y ~ x, rbind(testdata, p1))

> plot(y ~ x, rbind(testdata, p1))

> points(5.5,12,pch=4,cex=2)

> abline(lmod)

> abline(lmod1, lty=2)

The plot, seen in the first panel of Figure 6.9, shows a solid regression line for the
fit without the additional point marked with a cross. The dashed line shows the fit
with the extra point. There is not much difference. In particular, the slopes are very
similar. This is an example of a point which is an outlier, but does not have large
leverage or influence.

The second example introduces an extra point well outside the range of X :

> p2 <- c(15,15.1)

> lmod2 <- lm(y ~ x, rbind(testdata, p2))

> plot(y ~ x, rbind(testdata, p2))

> points(15,15.1,pch=4,cex=2)

> abline(lmod)

> abline(lmod2,lty=2)

The plot, seen in the second panel of Figure 6.9, shows that the additional point
makes little difference to the fitted regression line. This point has large leverage but
is not an outlier and is not influential.

The third example puts the point in a different position on the response scale.

> p3 <- c(15,5.1)

> lmod3 <- lm(y ~ x, rbind(testdata, p3))

> plot(y ~ x, rbind(testdata, p3))

> points(15,5.1,pch=4,cex=2)

> abline(lmod)

> abline(lmod3,lty=2)

The plot, seen in the third panel of Figure 6.9, shows that this additional point
changes the regression line substantially. Although this point still has a large resid-
ual, the residuals for the other points are also made much larger with the addition of
this point. Hence this point is both an outlier and an influential point. We must take
care to discover such points because they can have a substantial effect on the conclu-
sions of the analysis. Just looking at ε̂i misses difficult observations, like that seen in
the third example, which pull the regression line closer so that they conceal their true
status. To detect such points, we exclude point i and recompute the estimates to get
β̂(i) and σ̂2

(i) where (i) denotes that the ith case has been excluded. Hence:

ŷ(i) = xT
i β̂(i)

If ŷ(i)− yi is large, then case i is an outlier. To judge the size of a potential outlier,
we need an appropriate scaling. We find:

ˆvar (yi − ŷ(i)) = σ̂2
(i)(1+ xT

i (X
T
(i)X(i))

−1xi)
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Figure 6.9 In all three plots, the additional point is marked with a cross. The solid
line is the fit using the 10 original points and the dashed line is the fit with the added
point.

and so we define the studentized (sometimes called jackknife or crossvalidated)
residuals as:

ti =
yi − ŷ(i)

σ̂(i)(1+ xT
i (X

T
(i)X(i))−1xi)1/2

which are distributed tn−p−1 if the model is correct and ε ∼ N(0,σ2I). Fortunately,
there is an easier way to compute ti:

ti =
ε̂i

σ̂(i)
√

1−hi

= ri

(
n− p−1

n− p− r2
i

)1/2

which avoids doing n regressions.
Since ti ∼ tn−p−1, we can calculate a p-value to test whether case i is an outlier.

This is fine if we only test one preselected case. However, if we had n = 100 and
tested all the cases, we would expect to find around five outliers using this procedure
if we used a 5% significance level. Even though we might explicity test only one
or two large tis, we are implicitly testing all cases since we need to consider all the
residuals to find out which ones are large. Some adjustment of the level of the test is
necessary to avoid identifying an excess of outliers.

Suppose we want a level α test. Now P(all tests accept) = 1− P(at least one
rejects) ≥ 1−∑i P(test i rejects) = 1− nα. So this suggests that if an overall level
α test is required, then a level α/n should be used in each of the tests. This method
is called the Bonferroni correction and is used in contexts other than outliers. Its
biggest drawback is that it is conservative — it finds fewer outliers than the nominal
level of confidence would dictate. The larger that n is, the more conservative it gets.

Let’s compute studentized residuals for the savings data and pick out the largest:

> stud <- rstudent(lmod)

> stud[which.max(abs(stud))]

Zambia

2.8536
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The largest residual of 2.85 is rather large for a standard normal scale, but is it an
outlier? Compute the Bonferroni critical value:

> qt(.05/(50*2),44)

[1] -3.5258

Since 2.85 is less than 3.53, we conclude that Zambia is not an outlier. For simple
regression, the minimum critical value occurs at n = 23 taking the value 3.51. This
indicates that it is not worth the trouble of computing the outlier test p-value unless
the studentized residual exceeds about 3.5 in absolute value.

Some points to consider about outliers:

1. Two or more outliers next to each other can hide each other.

2. An outlier in one model may not be an outlier in another when the variables have
been changed or transformed. You will usually need to reinvestigate the question
of outliers when you change the model.

3. The error distribution may not be normal and so larger residuals may be expected.
For example, day-to-day changes in stock indices seem mostly normal, but larger
changes occur from time to time.

4. Individual outliers are usually much less of a problem in larger datasets. A sin-
gle point will not have the leverage to affect the fit very much. It is still worth
identifying outliers if these types of observations are worth knowing about in the
particular application. For large datasets, we need only to worry about clusters
of outliers. Such clusters are less likely to occur by chance and more likely to
represent actual structure. Finding these clusters is not always easy.

What should be done about outliers?

1. Check for a data-entry error first. These are relatively common. Unfortunately,
the original source of the data may have been lost or may be inaccessible. If you
can be sure that the point is truly a mistake and was not actually observed, then
the solution is simple: discard it.

2. Examine the physical context — why did it happen? Sometimes, the discovery
of an outlier may be of singular interest. Some scientific discoveries spring from
noticing unexpected aberrations. Another example of the importance of outliers
is in the statistical analysis of credit card transactions. Outliers may represent
fraudulent use. In such examples, the discovery of outliers is the main purpose of
the modeling.

3. Exclude the point from the analysis but try reincluding it later if the model is
changed. The exclusion of one or more observations may make the difference
between getting a statistically significant result or having some unpublishable re-
search. This can lead to a difficult decision about what exclusions are reasonable.
To avoid any suggestion of dishonesty, always report the existence of outliers even
if you do not include them in your final model. Be aware that casual or dishonest
exclusion of outliers is regarded as serious research malpractice.

4. Suppose you find outliers that cannot reasonably be identified as mistakes or aber-
rations, but are viewed as naturally occurring. Particularly if there are substantial
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numbers of such points, it is more efficient and reliable to use robust regression,
as explained in Section 8.4. Routine outlier rejection in conjunction with least
squares is not a good method of estimation. Some adjustment to the inferential
methods is necessary in such circumstances. In particular, the uncertainty assess-
ment for prediction needs to reflect the fact that extreme values can occur.

5. It is dangerous to exclude outliers in an automatic manner. National Aeronautics
and Space Administation (NASA) launched the Nimbus 7 satellite to record atmo-
spheric information. After several years of operation in 1985, the British Antarc-
tic Survey observed a large decrease in atmospheric ozone over the Antarctic. On
further examination of the NASA data, it was found that the data processing pro-
gram automatically discarded observations that were extremely low and assumed
to be mistakes. Thus the discovery of the Antarctic ozone hole was delayed sev-
eral years. Perhaps, if this had been known earlier, the chlorofluorocarbon (CFC)
phaseout would have been agreed upon earlier and the damage could have been
limited. See Stolarski et al. (1986) for more.

Here is an example of a dataset with multiple outliers. Data are available on the
log of the surface temperature and the log of the light intensity of 47 stars in the
star cluster CYG OB1, which is in the direction of Cygnus. These data appear in
Rousseeuw and Leroy (1987). Read in and plot the data:

> data(star, package="faraway")

> plot(star$temp,star$light,xlab="log(Temperature)", ylab="log(Light

Intensity)")

There appears to be a positive correlation between temperature and light intensity,
but there are four stars that do not fit the pattern. We fit a linear regression and add
the fitted line to the plot:

> lmod <- lm(light ~ temp, star)

> abline(lmod)

The plot is seen in Figure 6.10 with the regression line in solid type. This line does
not follow the bulk of the data because it tries to fit the four unusual points. We check
whether the outlier test detects these points:

> range(rstudent(lmod))

[1] -2.0494 1.9058

No outliers are found even though we can see them clearly in the plot. The four stars
on the upper left of the plot are giants. See what happens if these are excluded:

> lmodi <- lm(light ~ temp, data=star, subset=(temp>3.6))

> abline(lmodi,lty=2)

This illustrates the problem of multiple outliers. We can visualize the problems here
and take corrective action, but for higher dimensional data this is much more difficult.
Robust regression methods would be superior here. See Section 8.4.

6.2.3 Influential Observations

An influential point is one whose removal from the dataset would cause a large
change in the fit. An influential point may or may not be an outlier and may or
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Figure 6.10 Regression line including four leftmost points is solid and excluding
these points is dotted.

may not have large leverage but it will tend to have at least one of these two proper-
ties. In Figure 6.9, the third panel shows an influential point but in the second panel,
the added point is not influential.

There are several measures of influence. A subscripted (i) indicates the fit with-

out case i. We might consider the change in the fit XT (β̂− β̂(i)) = ŷ− ŷ(i), but there
will be n of these length n vectors to examine. For a more compact diagnostic, we
might consider the change in the coefficients β̂− β̂(i). There will be n× p of these
to look at. The Cook statistics are popular influence diagnostics because they reduce
the information to a single value for each case. They are defined as:

Di =
(ŷ− ŷ(i))

T (ŷ− ŷ(i))

pσ̂2

=
1

p
r2

i

hi

1−hi

The first term, r2
i , is the residual effect and the second is the leverage. The combina-

tion of the two leads to influence. A half-normal plot of Di can be used to identify
influential observations.

Continuing with our study of the savings data:
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> lmod <- lm(sr ~ pop15+pop75+dpi+ddpi,savings)

> cook <- cooks.distance(lmod)

> halfnorm(cook,3,labs=countries,ylab="Cook’s distances")

The Cook statistics may be seen in the first plot of Figure 6.11. I have identified
the largest three values. We now exclude the largest one (Libya) and see how the fit
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Figure 6.11 Half-normal plot of the Cook statistics and β̂− β̂(i)’s for pop15 for the
savings data.

changes:

> lmodi <- lm(sr ~ pop15+pop75+dpi+ddpi,savings,subset=(cook < max(

cook)))

> sumary(lmodi)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 24.524046 8.224026 2.98 0.0047

pop15 -0.391440 0.157909 -2.48 0.0171

pop75 -1.280867 1.145182 -1.12 0.2694

dpi -0.000319 0.000929 -0.34 0.7331

ddpi 0.610279 0.268778 2.27 0.0281

n = 49, p = 5, Residual SE = 3.795, R-Squared = 0.36

Compared to the full data fit:

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.566087 7.354516 3.88 0.00033

pop15 -0.461193 0.144642 -3.19 0.00260

pop75 -1.691498 1.083599 -1.56 0.12553

dpi -0.000337 0.000931 -0.36 0.71917

ddpi 0.409695 0.196197 2.09 0.04247

n = 50, p = 5, Residual SE = 3.803, R-Squared = 0.34
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Among other changes, we see that the coefficient for ddpi changed by about 50%.
We do not like our estimates to be so sensitive to the presence of just one country. It
would be rather tedious to leave out each country in turn, so we examine the leave-
out-one differences in the coefficients:

> plot(dfbeta(lmod)[,2],ylab="Change in pop15 coef")

> abline(h=0)

We have plotted the change in the second parameter estimate, (β̂pop15) when a case
is left out, as seen in the second panel of Figure 6.11. The identify function allows
interactive identification of points by clicking the left mouse button on the plot and
then using the middle mouse button to finish. This plot should be repeated for the
other variables. Japan sticks out on this particular plot so we examine the effect of
removing it:

> lmodj <- lm(sr ~ pop15+pop75+dpi+ddpi,savings,subset=(countries != "

Japan"))

> sumary(lmodj)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.940171 7.783997 3.08 0.0036

pop15 -0.367901 0.153630 -2.39 0.0210

pop75 -0.973674 1.155450 -0.84 0.4040

dpi -0.000471 0.000919 -0.51 0.6112

ddpi 0.334749 0.198446 1.69 0.0987

n = 49, p = 5, Residual SE = 3.738, R-Squared = 0.28

Comparing this to the full data fit, we observe several qualitative changes. Notice
that the ddpi term is no longer significant and that the R2 value has decreased a lot.

R provides an easy way to produce a useful selection of residual plots as seen in
Figure 6.12. The first plot shows the usual residual vs. fitted plot with the addition
of smoothed fitted line to aid interpretation. The second plot is the Q–Q plot of
the standardized residuals. A few more extreme cases have been labeled. The third
plot shows

√

|ε̂| against ŷ, again with an added smoothed fit. The fourth plot shows
the standardized residuals against the leverage. As the Cook statistics represent a
function of these two variables, we can plot contours. Any point that lies beyond
these contours might well be influential and require closer attention.

> plot(lmod)

6.3 Checking the Structure of the Model

Diagnostics can also be used to detect deficiencies in the structural part of the model,
given by EY = Xβ. The residuals are the best clues because signs of remaining
systematic structure here indicate that something is wrong. A good diagnostic can
often also suggest how the model can be improved. Formal lack of fit tests can be
used in limited circumstances, usually requiring replication. See Section 8.3. But
such tests, even if they are available, do not indicate how to improve the model.

We have already discussed plots of ε̂ against ŷ and xi. We have used these plots
to check the assumptions on the error, but they can also suggest transformations of
the variables which might improve the structural form of the model.
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Figure 6.12 Diagnostic plots for the savings data

We can also make plots of y against each xi. Indeed these should be part of any
exploratory analysis before model fitting begins. The drawback to these plots is that
the other predictors often affect the relationship between a given predictor and the
response. Partial regression or added variable plots can help isolate the effect of xi

on y. We regress y on all x except xi, and get residuals δ̂. These represent y with
the other X-effect taken out. Similarly, if we regress xi on all x except xi, and get
residuals γ̂, we have the effect of xi with the other X-effect taken out. The added
variable plot shows δ̂ against γ̂. Look for non-linearity and outliers and/or influential
observations in the plot.

We illustrate using the savings dataset as an example again. We construct a partial
regression (added variable) plot for pop15:

> d <- residuals(lm(sr ~ pop75 + dpi + ddpi,savings))

> m <- residuals(lm(pop15 ~ pop75 + dpi + ddpi,savings))

> plot(m,d,xlab="pop15 residuals",ylab="Savings residuals")
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The plot, shown in the first panel of Figure 6.13, shows nothing remarkable. There
is no sign of non-linearity or unusual points. An interesting feature of such plots is
revealed by considering the regression line. We compute this for the plot and notice
that it is the same as the corresponding coefficient from the full regression:
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Figure 6.13 Partial regression (left) and partial residual (right) plots for the savings
data.

> coef(lm(d ~ m))

(Intercept) m

5.4259e-17 -4.6119e-01

> lmod <- lm(sr ~ pop15+pop75+dpi+ddpi,savings)

> coef(lmod)

(Intercept) pop15 pop75 dpi ddpi

28.5660865 -0.4611931 -1.6914977 -0.0003369 0.4096949

> abline(0,coef(lmod)[’pop15’])

The partial regression plot provides some intuition about the meanings of regression
coefficients. We are looking at the marginal relationship between the response and
the predictor after the effect of the other predictors has been removed. Multiple
regression is difficult because we cannot visualize the full relationship because of the
high dimensionality. The partial regression plot allows us to focus on the relationship
between one predictor and the response, much as in simple regression.

Partial residual plots serve as an alternative to added variable plots. We construct
the response with the predicted effect of the other X removed:

y−∑
j ̸=i

x jβ̂ j = ŷ+ ε̂−∑
j ̸=i

x jβ̂ j = xiβ̂i + ε̂

The partial residual plot is then ε̂+ β̂ixi against xi. Again the slope on the plot will be
β̂i and the interpretation is the same. Partial residual plots are believed to be better
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for non-linearity detection while added variable plots are better for outlier/influential
detection.

A partial residual plot is easy to construct. The termplot centers the xi so that
ε̂+ β̂i(xi − x̄i) can be called partial residuals and have mean zero.

> termplot(lmod, partial.resid=TRUE, terms=1)

We see two groups in the plot, seen in the second panel of 6.13. It suggests that there
may be a different relationship in the two groups. We investigate this:

> mod1 <- lm(sr ~ pop15+pop75+dpi+ddpi,savings,subset=(pop15 > 35))

> mod2 <- lm(sr ~ pop15+pop75+dpi+ddpi,savings,subset=(pop15 < 35))

> sumary(mod1)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.433969 21.155028 -0.12 0.91

pop15 0.273854 0.439191 0.62 0.54

pop75 -3.548477 3.033281 -1.17 0.26

dpi 0.000421 0.005000 0.08 0.93

ddpi 0.395474 0.290101 1.36 0.19

n = 23, p = 5, Residual SE = 4.454, R-Squared = 0.16

> sumary(mod2)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.961795 8.083750 2.96 0.0072

pop15 -0.385898 0.195369 -1.98 0.0609

pop75 -1.327742 0.926063 -1.43 0.1657

dpi -0.000459 0.000724 -0.63 0.5326

ddpi 0.884394 0.295341 2.99 0.0067

n = 27, p = 5, Residual SE = 2.772, R-Squared = 0.51

In the first regression on the subset of underdeveloped countries, we find no relation
between the predictors and the response. We know from our previous examination
of these data that this result is not attributable to outliers or unsuspected transfor-
mations. In contrast, there is a strong relationship in the developed countries. The
strongest predictor is growth together with some relationship to proportion of popu-
lation under 15. This latter effect has been reduced from prior analyses because we
have reduced the range of this predictor by the subsetting operation. The graphical
analysis has shown a relationship in the data that a purely numerical analysis might
easily have missed.

Sometimes it can be helpful to introduce extra dimensions into diagnostic plots
with the use of color, plotting symbol or size. Alternatively, plots can be faceted.
The ggplot2 package is convenient for this purpose. Here are a couple of examples:

> savings$status <- ifelse(savings$pop15 > 35, "young", "old")

> require(ggplot2)

> ggplot(savings,aes(x=ddpi,y=sr,shape=status))+geom_point()

> ggplot(savings,aes(x=ddpi,y=sr))+geom_point()+facet_grid(~ status)+

stat_smooth(method="lm")

The plots in Figure 6.14 show how we can distinguish the two levels of the status
variable derived from the population proportion under 15 in two different ways. In
this case, the second set of plots is more effective. Note how we have added a re-
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Figure 6.14 Introducing another dimension to diagnostic plots. Shape is used de-
note the status variable on the left while faceting is used on the right.

gression line with 95% confidence bands, making it clear how the relationship differs
between the two groups.

Higher dimensional plots can also be useful for detecting structures that cannot
be seen in two dimensions. These are interactive in nature so you need to try them
to see how they work. We can make three-dimensional plots where color, point size
and rotation are used to give the illusion of a third dimension. We can also link two
or more plots so that points which are brushed in one plot are highlighted in another.
These tools look good but it is not clear whether they actually are useful in practice.
There are communication difficulties, as these plots cannot be easily printed. R does
not have such tools, but GGobi is a useful free tool for exploring higher dimensional
data that can be called from R. See www.ggobi.org.

Non-graphical techniques for checking the structural form of the model usu-
ally involve proposing alternative transformations or recombinations of the variables.
This approach is explored in Chapter 9.

6.4 Discussion

Some assumptions a more important than others because some violations are more
serious in that they can lead to very misleading conclusions. We can order these
assumptions according to their importance:

1. The systematic form of the model. If you get this seriously wrong, then pre-
dictions will be inaccurate and any explanation of the relationship between the
variables may be biased in misleading ways.

2. Dependence of errors. The presence of strong dependence means that there is less
information in the data than the sample size may suggest. Furthermore, there is a
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risk that the analyst will mistakenly introduce systematic components to the model
in an attempt to deal with an unsuspected dependence in the errors. Unfortunately,
it is difficult to detect dependence in the errors using regression diagnostics except
in special situations such as temporal data. For other types of data, the analyst will
need to rely on less testable assumptions about independence based on contextual
knowledge.

3. Nonconstant variance. A failure to address this violation of the linear model as-
sumptions may result in inaccurate inferences. In particular, prediction uncer-
tainty may not be properly quantified. Even so, excepting serious violations, the
adequacy of the inference may not be seriously compromised.

4. Normality. This is the least important assumption. For large datasets, the infer-
ence will be quite robust to a lack of normality as the central limit theorem will
mean that the approximations will tend to be adequate. Unless the sample size is
quite small or the errors very strongly abnormal, this assumption is not crucial to
success.

Although it is not part of regression diagnostics, it is worthwhile also mentioning
that an even more important assumption is that the data at hand are relevant to the
question of interest. This requires some qualitative judgement and is not checkable
by plots or tests.

Excercises

1. Using the sat dataset, fit a model with the total SAT score as the response and
expend, salary, ratio and takers as predictors. Perform regression diagnostics on
this model to answer the following questions. Display any plots that are relevant.
Do not provide any plots about which you have nothing to say. Suggest possible
improvements or corrections to the model where appropriate.

(a) Check the constant variance assumption for the errors.

(b) Check the normality assumption.

(c) Check for large leverage points.

(d) Check for outliers.

(e) Check for influential points.

(f) Check the structure of the relationship between the predictors and the response.

2. Using the teengamb dataset, fit a model with gamble as the response and the other
variables as predictors. Answer the questions posed in the previous question.

3. For the prostate data, fit a model with lpsa as the response and the other vari-
ables as predictors. Answer the questions posed in the first question.

4. For the swiss data, fit a model with Fertility as the response and the other
variables as predictors. Answer the questions posed in the first question.

5. Using the cheddar data, fit a model with taste as the response and the other
three variables as predictors. Answer the questions posed in the first question.
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6. Using the happy data, fit a model with happy as the response and the other four
variables as predictors. Answer the questions posed in the first question.

7. Using the tvdoctor data, fit a model with life as the response and the other two
variables as predictors. Answer the questions posed in the first question.

8. For the divusa data, fit a model with divorce as the response and the other
variables, except year as predictors. Check for serial correlation.



Chapter 7

Problems with the Predictors

7.1 Errors in the Predictors

The regression model Y = Xβ+ ε allows for Y being measured with error by having
the ε term, but what if the X is measured with error? In other words, what if the X

we see is not exactly the X that potentially drives Y ? It is not unreasonable that there
might be errors in measuring X . For example, consider the problem of determining
the effects of being exposed to a potentially hazardous substance such as second-
hand tobacco smoke. Such exposure would be a predictor in such a study, but it is
very hard to measure this exactly over a period of years.

One should not confuse errors in predictors with treating X as a random variable.
For observational data, X could be regarded as a random variable, but the regression
inference proceeds conditionally on a fixed value for X . For example, suppose we
conducted a study where the blood sugar level of the participants was a predictor.
Since the participants are sampled from a larger population, the blood sugar level is
a random variable. However, once we select the participants and measure the blood
sugar levels, these become fixed for the purposes of the regression. But our interest
in this section is the situation where we are not able to measure the blood sugar levels
accurately. In this case, the value we record will not be the same as the value that
possibly affects the response.

Suppose that what we observe is (xO
i ,y

O
i ) for i = 1, . . .n which are related to the

true values (xA
i ,y

A
i ):

yO
i = yA

i + εi

xO
i = xA

i +δi

where the errors ε and δ are independent. The situation is depicted in Figure 7.1. The
true underlying relationship is:

yA
i = β0 +β1xA

i

but we only see (xO
i ,y

O
i ). Putting it together, we get:

yO
i = β0 +β1xO

i +(εi −β1δi)

Suppose we use least squares to estimate β0 and β1. Let’s assume Eεi = Eδi = 0 and
that var εi = σ2

ε , var δi = σ2
δ. Let:

σ2
x = ∑(xA

i − x̄A)2/n σxδ = cov(xA,δ)

99
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x

y

True
(xA,yA)

y = β0 +β1xε

δ
Observed
(x,y)

Figure 7.1 Measurement error: true vs. observed data.

For observational data, σ2
x is (almost) the sample variance of XA while for a con-

trolled experiment we can view it as just a numerical measure of the spread of the
design. A similar distinction should be made for cov(xA,δ) although in many cases,
it will be reasonable to assume that this is zero.

Now β̂1 = ∑(xi − x̄)yi/∑(xi − x̄)2 and after some calculation we find that:

Eβ̂1 = β1
σ2

x +σxδ

σ2
x +σ2

δ +2σxδ

There are two main special cases of interest:

1. If there is no relation between XA and δ, σxδ = 0, this simplifies to:

Eβ̂1 = β1
1

1+σ2
δ/σ2

x

So β̂1 will be biased toward zero, regardless of the sample size. If σ2
δ is small

relative to σ2
x , then the problem can be ignored. In other words, if the variability

in the errors of observation of X is small relative to the range of X , then we need
not be too concerned. For multiple predictors, the usual effect of measurement
errors is also to bias the β̂ in the direction of zero.

2. In controlled experiments, we need to distinguish two ways in which error in x

may arise. In the first case, we measure x so although the true value is xA, we
observe x0. If we were to repeat the measurement, we would have the same xA,
but a different x0. In the second case, you fix xO — for example, you make up
a chemical solution with a specified concentration xO. The true concentration
would be xA. Now if you were to repeat this, you would get the same xO, but the
xA would be different. In this latter case we have:

σxδ = cov(X0 −δ,δ) =−σ2
δ

and then we would have Eβ̂1 = β1. So our estimate would be unbiased. This
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seems paradoxical, until you notice that the second case effectively reverses the
roles of xA and xO and if you get to observe the true X , then you will get an
unbiased estimate of β1. See Berkson (1950) for a discussion of this.
If the model is used for prediction purposes, we can make the same argument as
in the second case above. In repeated “experiments,” the value of x at which the
prediction is to be made will be fixed, even though these may represent different
underlying “true” values of x.

In cases where the error in X can simply not be ignored, we should consider
alternatives to the least squares estimation of β. The simple least squares regression
equation can be written as:

y− ȳ

SDy
= r

(x− x̄)

SDx

so that β̂1 = rSDy/SDx. Note that if we reverse the roles of x and y, we do not get the
same regression equation. Since we have errors in both x and y in our problem, we
might argue that neither one, in particular, deserves the role of response or predictor
and so the equation should be the same either way. One way to achieve this is to set
β̂1 = SDy/SDx. This is known as the geometric mean functional relationship. More
on this can be found in Draper and Smith (1998). Another approach is to use the
SIMEX method of Cook and Stefanski (1994), which we illustrate below.

Consider some data on the speed and stopping distances of cars in the 1920s. We
plot the data, as seen in Figure 7.2, and fit a linear model:

> data(cars)

> plot(dist ~ speed, cars,ylab="distance")

> lmod <- lm(dist ~ speed, cars)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -17.579 6.758 -2.60 0.012

speed 3.932 0.416 9.46 1.5e-12

n = 50, p = 2, Residual SE = 15.380, R-Squared = 0.65

> abline(lmod)

We could explore transformations and diagnostics for these data, but we will just
focus on the measurement error issue. Now we investigate the effect of adding mea-
surement error to the predictor. We plot the modified fits in Figure 7.2:

> lmod1 <- lm(dist ~ I(speed+rnorm(50)), cars)

> coef(lmod1)

(Intercept) I(speed + rnorm(50))

-15.0619 3.7582

> abline(lmod1,lty=2)

> lmod2 <- lm(dist ~ I(speed+2*rnorm(50)), cars)

> coef(lmod2)

(Intercept) I(speed + 2 * rnorm(50))

-5.3503 3.1676

> abline(lmod2,lty=3)

> lmod5 <- lm(dist ~ I(speed+5*rnorm(50)), cars)

> coef(lmod5)

(Intercept) I(speed + 5 * rnorm(50))

15.1589 1.8696
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Figure 7.2 Stopping distances and speeds of cars. The least squares fit is shown as
a solid line. The fits with three progressively larger amounts of measurement error
on the speed are shown as dotted lines, where the slope gets shallower as the error
increases.

> abline(lmod5,lty=4)

We can see that the slope becomes shallower as the amount of noise increases.
Suppose we knew that the predictor, speed, in the original data had been mea-

sured with a known error variance, say 0.5. Given what we have seen in the simulated
measurement error models, we might extrapolate back to suggest an estimate of the
slope under no measurement error. This is the idea behind SIMEX.

Here we simulate the effects of adding normal random error with variances rang-
ing from 0.1 to 0.5, replicating the experiment 1000 times for each setting:

> vv <- rep(1:5/10,each=1000)

> slopes <- numeric(5000)

> for(i in 1:5000) slopes[i] <- lm(dist ~ I(speed+sqrt(vv[i])*rnorm

(50)), cars)$coef[2]

Now we plot the mean slopes for each variance. We are assuming that the data have
variance 0.5 so the extra variance is added to this:

> betas <- c(coef(lmod)[2],colMeans(matrix(slopes,nrow=1000)))

> variances <- c(0,1:5/10)+0.5

> plot(variances,betas,xlim=c(0,1),ylim=c(3.86,4))

We fit a linear model and extrapolate to zero variance:

> gv <- lm(betas ~ variances)

> coef(gv)

(Intercept) variances

3.99975 -0.13552

> points(0,gv$coef[1],pch=3)
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Figure 7.3 Simulation–extrapolation estimation of the unbiased slope in the pres-
ence of measurement error in the predictors. We predict β̂ = 4.0 at a variance of zero.

The predicted value of β̂ at variance equal to zero, that is no measurement error, is
4.0. Better models for extrapolation are worth considering; see Cook and Stefanski
(1994) for details. The method is implemented in the simex package:

> require(simex)

> set.seed(123)

> lmod <- lm(dist ~ speed, cars, x=TRUE)

> simout <- simex(lmod,"speed",0.5, B=1000)

> simout

SIMEX -Variables: speed

Number of Simulations: 1000

Coefficients:

(Intercept) speed

-18.01 3.96

The results are about the same, bearing in mind that the method relies on simu-
lation and hence random generation so the output will not be identical.

7.2 Changes of Scale

Sometimes we want to change the scale of the variables. Perhaps we need to change
the units of measurement, say from inches to centimeters. A change of scale is
often helpful when variables take values which are all very large or all very small.
For example, we might find β̂ = 0.000000351. It can be misleading to deal with
quantities like this because it’s easy to lose track of the number of leading zeroes.
Humans deal better with interpreting moderate sized numbers like β̂ = 3.51. So to
avoid confusing yourself or your readers, a change of scale can be beneficial.
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In more extreme cases, a change of scale can be needed to ensure numerical
stability. Although many algorithms try to be robust against variables of widely
different scales, it is possible to run into calculation errors. Most methods work
more reliably when variables are on roughly similar scales.

Suppose we reexpress xi as (xi +a)/b. Rescaling xi leaves the t- and F-tests and

σ̂2 and R2 unchanged and β̂i → bβ̂i. Rescaling y in the same way leaves the t- and
F-tests and R2 unchanged, but σ̂ and β̂ will rescaled by b.

To demonstrate this, we use the savings data:

> data(savings, package="faraway")

> lmod <- lm(sr ~ pop15+pop75+dpi+ddpi,savings)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.566087 7.354516 3.88 0.00033

pop15 -0.461193 0.144642 -3.19 0.00260

pop75 -1.691498 1.083599 -1.56 0.12553

dpi -0.000337 0.000931 -0.36 0.71917

ddpi 0.409695 0.196197 2.09 0.04247

n = 50, p = 5, Residual SE = 3.803, R-Squared = 0.34

The coefficient for income is rather small — let’s measure income in thousands of
dollars instead and refit:

> lmod <- lm(sr ~ pop15+pop75+I(dpi/1000)+ddpi,savings)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.566 7.355 3.88 0.00033

pop15 -0.461 0.145 -3.19 0.00260

pop75 -1.691 1.084 -1.56 0.12553

I(dpi/1000) -0.337 0.931 -0.36 0.71917

ddpi 0.410 0.196 2.09 0.04247

n = 50, p = 5, Residual SE = 3.803, R-Squared = 0.34

What changed and what stayed the same?

One rather thorough approach to scaling is to convert all the variables to standard
units (mean 0 and variance 1) using the scale() command:

> scsav <- data.frame(scale(savings))

> lmod <- lm(sr ~ ., scsav)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.01e-16 1.20e-01 0.00 1.0000

pop15 -9.42e-01 2.95e-01 -3.19 0.0026

pop75 -4.87e-01 3.12e-01 -1.56 0.1255

dpi -7.45e-02 2.06e-01 -0.36 0.7192

ddpi 2.62e-01 1.26e-01 2.09 0.0425

n = 50, p = 5, Residual SE = 0.849, R-Squared = 0.34

As may be seen, the intercept is zero. This is because the regression plane always
runs through the point of the averages, which because of the centering, is now at the
origin. Such scaling has the advantage of putting all the predictors and the response
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on a comparable scale, which makes comparisons simpler. It also allows the coef-
ficients to be viewed as a kind of partial correlation — the values will always be
between minus one and one. It also avoids some numerical problems that can arise
when variables are of very different scales. The interpretation effect of this scaling
is that the regression coefficients now represent the effect of a one standard unit in-
crease in the predictor on the response in standard units — this might or might not
be easy to interpret.

When the predictors are on comparable scales, it can be helpful to construct a
plot of the estimates with confidence intervals as seen in Figure 7.4.

> edf <- data.frame(coef(lmod),confint(lmod))[-1,]

> names(edf) <- c(’Estimate’,’lb’,’ub’)

> require(ggplot2)

> p <- ggplot(aes(y=Estimate,ymin=lb,ymax=ub,x=row.names(edf)),data=

edf) + geom_pointrange()

> p+coord_flip()+xlab("Predictor")+geom_hline(xint=0,col=gray(0.75))
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Figure 7.4 Plot of the standardized coefficients for the savings model; 95% confi-
dence intervals are shown.

In the presence of binary predictors, scaling might be done differently. For ex-
ample, we notice that the countries in the savings data divide into two clusters based
on age. We can set a division at 35% for pop15:

> savings$age <- ifelse(savings$pop15 > 35, 0, 1)

so that younger countries are coded as zero and older countries as one. A binary
predictor taking the values of 0/1 with equal probability has a standard deviation of
one half. This suggests scaling the other continuous predictors by two SDs rather
than one:

> savings$dpis <- (savings$dpi-mean(savings$dpi))/(2*sd(savings$dpi))

> savings$ddpis <- (savings$ddpi - mean(savings$ddpi))/(2*sd(savings$

ddpi))

> sumary(lm(sr ~ age + dpis + ddpis, savings))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.82 1.01 6.75 2.2e-08

age 5.28 1.58 3.33 0.0017
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dpis -1.56 1.61 -0.97 0.3361

ddpis 2.47 1.11 2.23 0.0309

n = 50, p = 4, Residual SE = 3.800, R-Squared = 0.32

Now the interpretation of the coefficients becomes easier. The predicted difference
between older and younger countries is a savings rate 5.28% higher in the former.
This is a difference of two standard deviations. The same change of two standard
deviations in ddpi means a difference of one in the new scale of ddpis. So we could
say that a typical country with a high growth rate has a savings rate 2.47% higher
than one with a low growth rate. Now ddpi is really a continuous variable so this
interpretation is just for convenient intuition. Another way to achieve a similar effect
is to use a −1/+1 coding rather than 0/1 so that the standard scaling can be used on
the continuous predictors. See Gelman (2008) for more details.

7.3 Collinearity

When some predictors are linear combinations of others, then XT X is singular, and
we have a lack of identifiability as discussed in Section 2.10. Another name for this
problem is exact collinearity. There is no unique least squares estimate of β. The
solution may require removing some predictors.

A more challenging problem arises when XT X is close to singular but not exactly
so. This is known as collinearity or sometimes, multicollinearity. Collinearity leads
to imprecise estimates of β. The signs of the coefficients can be the opposite of
what intuition about the effect of the predictor might suggest. The standard errors
are inflated so that t-tests may fail to reveal significant factors. The fit becomes very
sensitive to measurement errors where small changes in y can lead to large changes
in β̂.

Collinearity can be detected in several ways:

1. Examination of the correlation matrix of the predictors may reveal values close to
−1 or +1 indicating large pairwise collinearities.

2. A regression of xi on all other predictors gives R2
i . R2

i close to one indicates
a problem because it means one predictor can almost be predicted exactly by a
linear combination of other predictors. Repeat for all predictors. The offending
linear combination may be discovered by examining the regression coefficients of
these regressions.

3. Examine the eigenvalues of XT X , λ1 ≥ · · · ≥ λp ≥ 0. Zero eigenvalues denote
exact collinearity while the presence of some small eigenvalues indicates multi-
collinearity. The condition number κ measures the relative sizes of the eigenvalues
and is defined as:

κ =

√

λ1

λp

where κ ≥ 30 is considered large. Other condition numbers,
√

λ1/λi are also
worth considering because they indicate whether more than just one independent
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linear combination is to blame. Alternative calculations involve standardizing the
predictors and/or including the intercept term in X .

The effect of collinearity can be seen by this expression for var β̂ j:

var β̂ j = σ2

(

1

1−R2
j

)

1

∑i(xi j − x̄ j)2

We can see that if the predictor x j does not vary much, then the variance of β̂ j will
be large. If R2

j is close to one, then the variance inflation factor (1−R2
j)
−1 will be

large and so var β̂ j will also be large.
This equation also tells us which designs will minimize the variance of the re-

gression coefficients if we have the ability to choose the X . Orthogonality means
that R2

j = 0 which minimizes the variance. Also we can maximize Sx jx j by spread-
ing X as much as possible. The maximum is attained by placing half the points at
the minimum practical value and half at the maximum. Unfortunately, this design
assumes the linearity of the effect and would make it impossible to check for any
curvature. So, in practice, we might put some design points in the middle of the
range to allow checking of the fit.

Car drivers like to adjust the seat position for their own comfort. Car designers
would find it helpful to know where different drivers will position the seat depending
on their size and age. Researchers at the HuMoSim laboratory at the University
of Michigan collected data on 38 drivers. They measured age in years, weight in
pounds, height with shoes and without shoes in centimeters, seated height arm length,
thigh length, lower leg length and hipcenter, the horizontal distance of the midpoint
of the hips from a fixed location in the car in millimeters. We fit a model with all the
predictors:

> data(seatpos, package="faraway")

> lmod <- lm(hipcenter ~ ., seatpos)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 436.4321 166.5716 2.62 0.014

Age 0.7757 0.5703 1.36 0.184

Weight 0.0263 0.3310 0.08 0.937

HtShoes -2.6924 9.7530 -0.28 0.784

Ht 0.6013 10.1299 0.06 0.953

Seated 0.5338 3.7619 0.14 0.888

Arm -1.3281 3.9002 -0.34 0.736

Thigh -1.1431 2.6600 -0.43 0.671

Leg -6.4390 4.7139 -1.37 0.182

n = 38, p = 9, Residual SE = 37.720, R-Squared = 0.69

This model already shows the signs of collinearity. The R2 is not small, but none of
the individual predictors is significant. We take a look at the pairwise correlations:

> round(cor(seatpos[,-9]),2)

Age Weight HtShoes Ht Seated Arm Thigh Leg

Age 1.00 0.08 -0.08 -0.09 -0.17 0.36 0.09 -0.04

Weight 0.08 1.00 0.83 0.83 0.78 0.70 0.57 0.78
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HtShoes -0.08 0.83 1.00 1.00 0.93 0.75 0.72 0.91

Ht -0.09 0.83 1.00 1.00 0.93 0.75 0.73 0.91

Seated -0.17 0.78 0.93 0.93 1.00 0.63 0.61 0.81

Arm 0.36 0.70 0.75 0.75 0.63 1.00 0.67 0.75

Thigh 0.09 0.57 0.72 0.73 0.61 0.67 1.00 0.65

Leg -0.04 0.78 0.91 0.91 0.81 0.75 0.65 1.00

There are several large pairwise correlations between predictors. Now we check the
eigendecomposition of XT X (not including the intercept in X):

> x <- model.matrix(lmod)[,-1]

> e <- eigen(t(x) %*% x)

> e$val

[1] 3653671.3630 21479.4802 9043.2253 298.9526 148.3948

[6] 81.1740 53.3619 7.2982

> sqrt(e$val[1]/e$val)

[1] 1.000 13.042 20.100 110.551 156.912 212.156 261.667 707.549

There is a wide range in the eigenvalues and several condition numbers are large.
This means that problems are being caused by more than just one linear combination.
Now check the variance inflation factors (VIFs). For the first variable this is:

> summary(lm(x[,1] ~ x[,-1]))$r.squared

[1] 0.49948

> 1/(1-0.49948)

[1] 1.9979

which is moderate in size — the VIF for orthogonal predictors is one. Now we
compute all the VIFs in one go, using a function from the faraway package:

> require(faraway)

> vif(x)

Age Weight HtShoes Ht Seated Arm Thigh

1.9979 3.6470 307.4294 333.1378 8.9511 4.4964 2.7629

Leg

6.6943

There is much variance inflation. For example, we can interpret
√

307.4 = 17.5 as
telling us that the standard error for height with shoes is 17.5 times larger than it
would have been without collinearity. We cannot apply this as a correction because
we did not actually observe orthogonal data, but it does give us a sense of the size of
the effect.

There is substantial instability in these estimates. Measuring the hipcenter is
difficult to do accurately and we can expect some variation in these values. Suppose
the measurement error had a SD of 10 mm. Let’s see what happens when we add a
random perturbation of this size to the response:

> lmod <- lm(hipcenter+10*rnorm(38) ~ ., seatpos)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 456.6518 178.1780 2.56 0.016

Age 0.8215 0.6101 1.35 0.189

Weight 0.0195 0.3540 0.06 0.956

HtShoes -3.4522 10.4326 -0.33 0.743

Ht 1.0121 10.8357 0.09 0.926

Seated 0.5625 4.0240 0.14 0.890
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Arm -1.0400 4.1720 -0.25 0.805

Thigh -1.8641 2.8454 -0.66 0.518

Leg -4.8880 5.0423 -0.97 0.340

n = 38, p = 9, Residual SE = 40.349, R-Squared = 0.66

Although the R2 and standard error are very similar to the previous fit, we see much
larger changes in the coefficients, indicating their sensitivity to the response values
caused by the collinearity.

We have too many variables that are trying to do the same job of explaining the
response. We can reduce the collinearity by carefully removing some of the variables.
We can then make a more stable estimation of the coefficients and come to a more
secure conclusion regarding the effect of the remaining predictors on the response.
But we should not conclude that the variables we drop have nothing to do with the
response.

Examine the full correlation matrix above. Consider just the correlations of the
length variables:

> round(cor(x[,3:8]),2)

HtShoes Ht Seated Arm Thigh Leg

HtShoes 1.00 1.00 0.93 0.75 0.72 0.91

Ht 1.00 1.00 0.93 0.75 0.73 0.91

Seated 0.93 0.93 1.00 0.63 0.61 0.81

Arm 0.75 0.75 0.63 1.00 0.67 0.75

Thigh 0.72 0.73 0.61 0.67 1.00 0.65

Leg 0.91 0.91 0.81 0.75 0.65 1.00

These six variables are strongly correlated with each other — any one of them might
do a good job of representing the other. We pick height as the simplest to measure.
We are not claiming that the other predictors are not associated with the response,
just that we do not need them all to predict the response:

> lmod2 <- lm(hipcenter ~ Age + Weight + Ht, seatpos)

> sumary(lmod2)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 528.29773 135.31295 3.90 0.00043

Age 0.51950 0.40804 1.27 0.21159

Weight 0.00427 0.31172 0.01 0.98915

Ht -4.21190 0.99906 -4.22 0.00017

n = 38, p = 4, Residual SE = 36.486, R-Squared = 0.66

Comparing this with the original fit, we see that the fit is very similar in terms of R2,
but many fewer predictors are used. Further simplification is clearly possible.

If you want to keep all your variables in the model, you should consider alter-
native methods of estimation such as ridge regression as described in Section 11.3.

The effect of collinearity on prediction is less serious. The accuracy of the pre-
diction depends on where the prediction is to be made. The greater the distance is
from the observed data, the more unstable the prediction. Of course, this is true for all
data but collinear data covers a much smaller fraction of the the predictor space than
it might first appear. This means that predictions tend to be greater extrapolations
than with data that are closer to the orthogonality.
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Exercises

1. Using the faithful data, fit a regression of duration on waiting. Assuming
that there was a measurement error in waiting of 30 seconds, use the SIMEX
method to obtain a better estimate of the slope.

2. What would happen if the SIMEX method was applied to the response error vari-
ance rather than predictor measurement error variance?

3. Using the divusa data:

(a) Fit a regression model with divorce as the response and unemployed, femlab,

marriage, birth and military as predictors. Compute the condition
numbers and interpret their meanings.

(b) For the same model, compute the VIFs. Is there evidence that collinearity
causes some predictors not to be significant? Explain.

(c) Does the removal of insignificant predictors from the model reduce the collinear-
ity? Investigate.

4. For the longley data, fit a model with Employed as the response and the other
variables as predictors.

(a) Compute and comment on the condition numbers.

(b) Compute and comment on the correlations between the predictors.

(c) Compute the variance inflation factors.

5. For the prostate data, fit a model with lpsa as the response and the other vari-
ables as predictors.

(a) Compute and comment on the condition numbers.

(b) Compute and comment on the correlations between the predictors.

(c) Compute the variance inflation factors.

6. Using the cheddar data, fit a linear model with taste as the response and the
other three variables as predictors.

(a) Is the predictor Lactic statistically significant in this model?

(b) Give the R command to extract the p-value for the test of βlactic = 0. Hint:
look at summary()$coef.

(c) Add normally distributed errors to Lactic with mean zero and standard de-
viation 0.01 and refit the model. Now what is the p-value for the previous
test?

(d) Repeat this same calculation of adding errors to Lactic 1000 times within for

loop. Save the p-values into a vector. Report on the average p-value. Does this
much measurement error make a qualitative difference to the conclusions?

(e) Repeat the previous question but with a standard deviation of 0.1. Does this
much measurement error make an important difference?

7. Use the happy dataset with happy as the response and the other variables as pre-
dictors. Discuss possible rescalings of the variables with the aim of helping the
interpretation of the model fit.
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8. Use the fat data, fitting the model described in Section 4.2.

(a) Compute the condition numbers and variance inflation factors. Comment on
the degree of collinearity observed in the data.

(b) Cases 39 and 42 are unusual. Refit the model without these two cases and
recompute the collinearity diagnostics. Comment on the differences observed
from the full data fit.

(c) Fit a model with brozek as the response and just age, weight and height as
predictors. Compute the collinearity diagnostics and compare to the full data
fit.

(d) Compute a 95% prediction interval for brozek for the median values of age,
weight and height.

(e) Compute a 95% prediction interval for brozek for age=40, weight=200 and
height=73. How does the interval compare to the previous prediction?

(f) Compute a 95% prediction interval for brozek for age=40, weight=130 and
height=73. Are the values of predictors unusual? Comment on how the inter-
val compares to the previous two answers.



Chapter 8

Problems with the Error

We have assumed that the error ε is independent and identically distributed (i.i.d.).
Furthermore, we have also assumed that the errors are normally distributed in order
to carry out the usual statistical inference. We have seen that these assumptions can
often be violated and we must then consider alternatives. When the errors are depen-
dent, we can use generalized least squares (GLS). When the errors are independent,
but not identically distributed, we can use weighted least squares (WLS), which is a
special case of GLS. Sometimes, we have a good idea how large the error should be,
but the residuals may be much larger than we expect. This is evidence of a lack of fit.
When the errors are not normally distributed, we can use robust regression.

8.1 Generalized Least Squares

Until now we have assumed that var ε = σ2I, but sometimes the errors have non-
constant variance or are correlated. Suppose instead that var ε = σ2Σ where σ2 is
unknown but Σ is known — in other words, we know the correlation and relative
variance between the errors, but we do not know the absolute scale of the variation.
For now, it might seem redundant to distinguish between σ and Σ, but we will see
how this will be useful later.

We can write Σ = SST , where S is a triangular matrix using the Choleski decom-
position, which be can be viewed as a square root for a matrix. We can transform the
regression model as follows:

y = Xβ+ ε

S−1y = S−1Xβ+S−1ε

y′ = X ′β+ ε′

Now we find that:

var ε′ = var (S−1ε) = S−1(var ε)S−T = S−1σ2SST S−T = σ2I

So we can reduce GLS to ordinary least squares (OLS) by a regression of y′ = S−1y

on X ′ = S−1X which has error ε′ = S−1ε that is i.i.d. We have transformed the
problem to the standard case. In this transformed model, the sum of squares is:

(S−1y−S−1Xβ)T (S−1y−S−1Xβ)= (y−Xβ)T S−T S−1(y−Xβ)= (y−Xβ)T Σ−1(y−Xβ)

which is minimized by:
β̂ = (XT Σ−1X)−1XT Σ−1y

113
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We find that:
var β̂ = (XT Σ−1X)−1σ2

Since ε′ = S−1ε, diagnostics should be applied to the residuals, S−1ε̂. If we have the
right Σ, then these should be approximately i.i.d.

The main problem in applying GLS in practice is that Σ may not be known and we
have to estimate it. Let’s take another look at the global warming data first considered
in Section 6.1.3. We found evidence of serial correlation by looking at successive
residuals. We demonstrate how we can model this using GLS. We start with the OLS
solution by fitting a linear model:

> data(globwarm,package="faraway")

> lmod <- lm(nhtemp ~ wusa + jasper + westgreen + chesapeake +

tornetrask + urals + mongolia + tasman, globwarm)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.24256 0.02701 -8.98 2e-15

wusa 0.07738 0.04293 1.80 0.07365

jasper -0.22879 0.07811 -2.93 0.00399

westgreen 0.00958 0.04184 0.23 0.81917

chesapeake -0.03211 0.03405 -0.94 0.34735

tornetrask 0.09267 0.04505 2.06 0.04161

urals 0.18537 0.09143 2.03 0.04457

mongolia 0.04197 0.04579 0.92 0.36100

tasman 0.11545 0.03011 3.83 0.00019

n = 145, p = 9, Residual SE = 0.176, R-Squared = 0.48

> cor(residuals(lmod)[-1],residuals(lmod)[-length(residuals(lmod))])

[1] 0.58334

In data collected over time such as this, successive errors could be correlated. We
have calculated this by computing the correlation between the vector of residuals
with the first and then the last term omitted. We can see a correlation of 0.58 between
successive residuals. The simplest way to model this is the autoregressive form:

εi+1 = φεi +δi

where δi ∼ N(0,τ2). The nlme package of Pinheiro and Bates (2000) contains a GLS
fitting function. We can use it to fit this model:

> require(nlme)

> glmod <- gls(nhtemp ~ wusa + jasper + westgreen + chesapeake +

tornetrask + urals + mongolia + tasman, correlation=corAR1(form=

~year), data=na.omit(globwarm))

> summary(glmod)

Generalized least squares fit by REML

Correlation Structure: AR(1)

Formula: ~year

Parameter estimate(s):

Phi

0.71099

Coefficients:

Value Std.Error t-value p-value

(Intercept) -0.230106 0.067024 -3.4332 0.0008
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wusa 0.066738 0.098772 0.6757 0.5004

jasper -0.202443 0.188028 -1.0767 0.2835

westgreen -0.004403 0.089853 -0.0490 0.9610

chesapeake -0.007353 0.073498 -0.1000 0.9205

tornetrask 0.038352 0.094825 0.4044 0.6865

urals 0.241422 0.228710 1.0556 0.2930

mongolia 0.056950 0.104898 0.5429 0.5881

tasman 0.120349 0.074570 1.6139 0.1089

Residual standard error: 0.20457

Degrees of freedom: 145 total; 136 residual

The lm function drops missing value cases (which is what we want) but gls com-
plains so we have removed these cases using the na.omit function. We notice that
the residual standard error σ̂ is a little larger in the GLS case as might be expected.
The standard errors of β̂ are much larger and none of the predictors is statistically sig-
nificant in the GLS output. However, there is substantially collinearity between the
predictors so this should not be interpreted as “no predictor effect”. Also you should
understand that correlation between the predictors and correlation between the errors
are different phenomena and there is no necessary link between the two. We see that
the estimated value of φ is 0.71. It is not surprising to see significant autocorrelation
in this example because the proxies can only partially predict the temperature and we
would naturally expect some carryover effect from one year to the next. We check
the confidence intervals for this term:

> intervals(glmod,which="var-cov")

Approximate 95% confidence intervals

Correlation structure:

lower est. upper

Phi 0.50997 0.71099 0.83838

attr(,"label")

[1] "Correlation structure:"

Residual standard error:

lower est. upper

0.15407 0.20457 0.27163

We see from the interval, (0.51,0.84), that this term is clearly different from zero and
that there is significant positive correlation. For this example, we might investigate
whether a more sophisticated model should apply to errors perhaps using a so-called
ARMA model. This can be implemented using the corARMA function.

Another situation where correlation between errors might be anticipated is where
observations are grouped in some way. For example, consider an experiment to
compare eight varieties of oats. The growing area was heterogeneous and so was
grouped into five blocks. Each variety was sown once within each block and the yield
in grams per 16-ft row was recorded. The data come from Anderson and Bancroft
(1952). It is reasonable to expect that the observations within a block might have
errors which are correlated, that is cor(εi,ε j) is ρ if i and j are in the same block
while zero otherwise. This is called the compound symmetry assumption and is
modeled as follows:
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> glmod <- gls(yield ~ variety, oatvar, correlation = corCompSymm(form

= ~1 | block))

> intervals(glmod)

Approximate 95% confidence intervals

Correlation structure:

lower est. upper

Rho 0.065964 0.396 0.74937

We see that there is good evidence of a non-zero correlation of around 0.4 between
the errors within the blocks. There are other ways to model the block effect and we
return to this dataset in Section 17.1.

Other examples where correlated errors can arise are in spatial data where the
relative locations of the observations can be used to model the error correlation. In
other cases, one may suspect a correlation between errors but have no structure to
suggest a parameterized form such as serial correlation or compound symmetry. The
problem is that there are too many pairwise correlations to be estimated and not
enough data to do it.

8.2 Weighted Least Squares

Sometimes the errors are uncorrelated, but have unequal variance where the form
of the inequality is known. In such cases, Σ is diagonal but the entries are not
equal. Weighted least squares (WLS) is a special case of GLS and can be used in
this situation. We set Σ = diag(1/w1, . . . ,1/wn), where the wi are the weights so
S = diag(

√

1/w1, . . . ,
√

1/wn). We then regress
√

wiyi on
√

wixi (although the col-
umn of ones in the X-matrix needs to be replaced with

√
wi). When weights are used,

the residuals must be modified to use
√

wiε̂i. We see that cases with low variability
get a high weight and those with high variability a low weight. Some examples:

1. Errors proportional to a predictor: var (εi) ∝ xi suggests wi = x−1
i . One might

choose this option after observing a positive relationship in a plot of |ε̂i| against
xi.

2. When the Yi are the averages of ni observations, then var yi = var εi = σ2/ni,
which suggests wi = ni. Responses that are averages arise quite commonly, but
take care that the variance in the response really is proportional to the group size.
For example, consider the life expectancies for different countries. At first glance,
one might consider setting the weights equal to the populations of the countries,
but notice that there are many other sources of variation in life expectancy that
would dwarf the population size effect.

3. When the observed responses are known to be of varying quality, weights may be
assigned wi = 1/sd(yi).

Elections for the French presidency proceed in two rounds. In 1981, there were
10 candidates in the first round. The top two candidates then went on to the second
round, which was won by François Mitterand over Valéry Giscard-d’Estaing. The
losers in the first round can gain political favors by urging their supporters to vote
for one of the two finalists. Since voting is private, we cannot know how these votes
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were transferred; we might hope to infer from the published vote totals how this
might have happened. Anderson and Loynes (1987) published data on these vote
totals in every fourth department of France:

> data(fpe,package="faraway")

> fpe

EI A B C D E F G H J K A2 B2 N

Ain 260 51 64 36 23 9 5 4 4 3 3 105 114 17

Alpes 75 14 17 9 9 3 1 2 1 1 1 32 31 5

...

A and B stand for Mitterand’s and Giscard’s votes in the first round, respectively,
while A2 and B2 represent their votes in the second round. C-K are the first round
votes of the other candidates while EI denotes electeur inscrits or registered vot-
ers. All numbers are in thousands. The total number of voters in the second round
was greater than the first — we can compute the difference as N. We will treat this
group like another first round candidate (although we could reasonably handle this
differently).

Now we can represent the transfer of votes as:

A2 = βAA+βBB+βCC+βDD+βEE +βF F +βGG+βHH +βJJ+βKK +βNN

where βi represents the proportion of votes transferred from candidate i to Mitterand
in the second round. We can equally well do this for Giscard-d’Estaing but then
the β’s will simply be the remaining proportions so it’s not necessary to do both. We
would expect these transfer proportions to vary somewhat between departments, so if
we treat the above as a regression equation, there will be some error from department
to department. The error will have a variance in proportion to the number of voters
because it will be like a variance of a sum rather than a mean. Since the weights
should be inversely proportional to the variance, this suggests that the weights should
be set to 1/EI. Notice also that the equation has no intercept, hence the -1 in the
model formula. We fit the appropriate model:

> lmod <- lm(A2 ~ A+B+C+D+E+F+G+H+J+K+N-1, fpe, weights=1/EI)

> coef(lmod)

A B C D E F G

1.06713 -0.10505 0.24596 0.92619 0.24940 0.75511 1.97221

H J K N

-0.56622 0.61164 1.21066 0.52935

Note that the weights do matter — see what happens when we leave them out:

> lm(A2 ~ A+B+C+D+E+F+G+H+J+K+N-1, fpe)$coef

A B C D E F G

1.07515 -0.12456 0.25745 0.90454 0.67068 0.78253 2.16566

H J K N

-0.85429 0.14442 0.51813 0.55827

which causes substantial changes for some of the lesser candidates. Furthermore,
only the relative proportions of the weights matter — for example, suppose we mul-
tiply the weights by 53:
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> lm(A2 ~ A+B+C+D+E+F+G+H+J+K+N-1, fpe, weights=53/EI)$coef

A B C D E F G

1.06713 -0.10505 0.24596 0.92619 0.24940 0.75511 1.97221

H J K N

-0.56622 0.61164 1.21066 0.52935

This makes no difference.
Now there is one remaining difficulty, unrelated to the weighting, in that propor-

tions are supposed to be between zero and one. We can impose an ad hoc fix by
truncating the coefficients that violate this restriction either to zero or one as appro-
priate. This gives:

> lm(A2 ~ offset(A+G+K)+C+D+E+F+N-1, fpe, weights=1/EI)$coef

C D E F N

0.22577 0.96998 0.39020 0.74424 0.60854

The offset function means no coefficient will be fit which is the same as saying the
coefficient will be one. We see that voters for the Communist candidate D apparently
almost all voted for the Socialist Mitterand in the second round. However, we see
that around 20% of the voters for the Gaullist candidate C voted for Mitterand. This
is surprising since these voters would normally favor the more right wing candidate,
Giscard. This appears to be the decisive factor. We see that of the larger blocks of
smaller candidates, the Ecology party voters, E, roughly split their votes as did the
first round non-voters. The other candidates had very few voters and so their behavior
is less interesting.

This analysis is somewhat crude and more sophisticated approaches are discussed
in Anderson and Loynes (1987). The pcls() function in the mgcv package of Wood
(2006) provides a solution to the constrained least squares problem which in this case
requires 0 ≤ β̂i ≤ 1. The solution obtained is:

> require(mgcv)

> M <- list(w=1/fpe$EI, X=model.matrix(lmod), y=fpe$A2, Ain=rbind(diag

(11),-diag(11)), C=matrix(0,0,0), array(0,0), S=list(), off=NULL,

p=rep(0.5,11), bin=c(rep(0,11), rep(-1,11)))

> a <- pcls(M)

> names(a) <- colnames(model.matrix(lmod))

> round(a,3)

A B C D E F G H J K N

1.000 0.000 0.208 0.969 0.359 0.743 1.000 0.367 0.000 1.000 0.575

The results are quite similar for the candidates C, D, E and N who have substantial
numbers of votes, but the coefficients for small party candidates vary much more.

In examples where the form of the variance of ε is not completely known, we
may model Σ using a small number of parameters. For example:

sdεi = γ0 + x
γ1
1

might seem reasonable in a given situation. Notice that we do not need a coefficient in
front of x1 as the specification of weights is invariant to multiplication by a constant.

Consider, for example the cars data used in Chapter 7:

> lmod <- lm(dist ~ speed, cars)

> plot(residuals(lmod) ~ speed, cars)
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The plot (not shown) reveals that the variation in the residuals increases with speed.
One solution to this problem is to set the weights according to the above form and
simultaneously estimate β and γ using maximum likelihood methods. We can achieve
this as follows:

> wlmod <- gls(dist ~ speed, data=cars, weight = varConstPower(1, form

= ~ speed))

> summary(wlmod)

Variance function:

Structure: Constant plus power of variance covariate

Formula: ~speed

Parameter estimates:

const power

3.1604 1.0224

Coefficients:

Value Std.Error t-value p-value

(Intercept) -11.0854 4.0524 -2.7355 0.0087

speed 3.4842 0.3202 10.8799 0.0000

Correlation:

(Intr)

speed -0.9

Standardized residuals:

Min Q1 Med Q3 Max

-1.45206 -0.68982 -0.13083 0.63750 3.07570

Residual standard error: 0.76368

Degrees of freedom: 50 total; 48 residual

We see that γ̂0 = 3.16 and γ̂1 = 1.0224. Since the latter is so close to 1, we can see
that this variance function takes quite a simple form.

8.3 Testing for Lack of Fit

How can we tell whether a model fits the data? If the model is correct, then σ̂2 should
be an unbiased estimate of σ2. If we have a model that is not complex enough to fit
the data or simply takes the wrong form, then σ̂2 will tend to overestimate σ2. The
situation is illustrated in Figure 8.1 where the residuals from the incorrect constant
fit will lead to an overestimate of σ2. Alternatively, if our model is too complex and
overfits the data, then σ̂2 will be an underestimate.

This suggests a possible testing procedure — we should compare σ̂2 to σ2. But
this requires us to know σ2. In a few cases, we might actually know σ2 – for example,
when measurement error is the only source of variation and we know its variance
because we are very familiar with the measurement device. This is rather uncommon
because we usually have more than just measurement error.

We might compare the σ̂2 from our chosen regression model to one obtained from
another model. But this may just be the same as the F-test introduced in Chapter 3.
This would indicate a preference between the two models but could not tell us that
the preferred model fit the data. We need to make a comparison to some model-free
estimate of σ2.
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Figure 8.1 True quadratic fit shown with the solid line and incorrect linear fit shown
with the dotted line. Estimate of σ2 will be unbiased for the quadratic model, but too
large for the linear model.

We can do this if we have repeated values of the response for one or more fixed
values of x. These replicates do need to be truly independent. They cannot just be
repeated measurements on the same subject or unit. For example, the cases in the
data may be people and the response might be blood pressure. We might sensibly
repeat these measurements of blood pressure. But such repeated measures would
only reveal the within-subject variability or the measurement error. We need different
people but with the same predictor values. This would give us the between-subject
variability and allow us to construct an estimate of σ2 that does not depend on a
particular model.

Let yi j be the ith observation in the group of true replicates j. The “pure error” or
model-free estimate of σ2 is given by SSpe/d fpe where:

SSpe = ∑
j
∑

i

(yi j − ȳ j)
2

where ȳ j is the mean within replicate group j. The degrees of freedom are d fpe =
∑ j(#replicates j −1) = n−#groups.

There is a convenient way to compute the estimate. Fit a model that assigns one
parameter to each group of observations with fixed x, then the σ̂2 from this model
will be the pure error σ̂2. This model is saturated and tells us nothing interesting
about the relationship between the predictors and the response. It simply fits a mean
to each group of replicates. Values of x with no replication will be fit exactly and will
not contribute to the estimate of σ2. Comparing this model to the regression model
using the standard F-test gives us the lack-of-fit test.

The data for this example consist of 13 specimens of 90/10 Cu–Ni alloys with
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varying percentages of iron content. The specimens were submerged in seawater for
60 days and the weight loss due to corrosion was recorded in units of milligrams per
square decimeter per day. The data come from Draper and Smith (1998). We load in
and plot the data, as seen in Figure 8.2:

> data(corrosion, package="faraway")

> plot(loss ~ Fe, corrosion,xlab="Iron content", ylab="Weight loss")

We fit a straight-line model:

> lmod <- lm(loss ~ Fe, corrosion)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 129.79 1.40 92.5 < 2e-16

Fe -24.02 1.28 -18.8 1.1e-09

n = 13, p = 2, Residual SE = 3.058, R-Squared = 0.97

Now we show the regression line on the plot:

> abline(coef(lmod))
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Figure 8.2 Linear fit to the Cu–Ni corrosion data is shown on the left. Group means
are denoted by plus signs. A polynomial fit to the data is shown on the right.

We have an R2 of 97% and an apparently good fit to the data. We now fit a model
that reserves a parameter for each group of data with the same value of x. This is
accomplished by declaring the predictor to be a factor. We will describe this in more
detail in Chapter 15:

> lmoda <- lm(loss ~ factor(Fe), corrosion)

The fitted values are the means in each group and we put these on the plot:

> points(corrosion$Fe,fitted(lmoda),pch=3)
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We can now compare the two models in the usual way:

> anova(lmod, lmoda)

Analysis of Variance Table

Model 1: loss ~ Fe

Model 2: loss ~ factor(Fe)

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 11 102.9

2 6 11.8 5 91.1 9.28 0.0086

The low p-value indicates that we must conclude that there is a lack of fit. The reason
is that the pure error SD

√

(11.8/6) = 1.4, is substantially less than the regression
standard error of 3.06. We might investigate models other than a straight line al-
though no obvious alternative is suggested by the plot. Before considering other
models, we would first find out whether the replicates are genuine. Perhaps the low
pure error SD can be explained by some correlation in the measurements. They may
not be genuine replicates. Another possible explanation is that an unmeasured third
variable is causing the lack of fit.

When there are replicates, it is impossible to get a perfect fit. Even when there is
a parameter assigned to each group of x-values, the residual sum of squares will not
be zero. For the factor-based model above, the R2 is 99.7%. So even this saturated
model does not attain a 100% value for R2. For these data, it is a small difference but
in other cases, the difference can be substantial. In these cases, one should realize
that the maximum R2 that may be attained might be substantially less than 100% and
so perceptions about a good value for R2 should be downgraded appropriately.

These methods are good for detecting lack of fit, but if the null hypothesis is
accepted, we cannot conclude that we have the true model. After all, it may be that
we just did not have enough data to detect the inadequacies of the model. All we can
say is that the model is not contradicted by the data.

When there are no replicates, it may be possible to group the responses for similar
x, but this is not straightforward. It is also possible to detect lack of fit by less formal,
graphical methods as described in Chapter 6.

A more general question is how good a fit do you really want? By increasing
the complexity of the model, it is possible to fit the data more closely. By using as
many parameters as data points, we can fit the data exactly. Very little is achieved
by doing this since we learn nothing beyond the data and any predictions made using
such a model will tend to have high variance. The question of how complex a model
to fit is difficult and fundamental. For example, we can fit the mean responses for the
previous example exactly using a sixth order polynomial:

> lmodp <- lm(loss ~ Fe+I(Fe^2)+I(Fe^3)+I(Fe^4)+I(Fe^5)+I(Fe^6),

corrosion)

Now look at this fit:

> plot(loss ~ Fe, data=corrosion,ylim=c(60,130))

> points(corrosion$Fe,fitted(lmoda),pch=3)

> grid <- seq(0,2,len=50)

> lines(grid,predict(lmodp, data.frame(Fe=grid)))
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as shown in the right panel of Figure 8.2. The fit of this model is excellent — for
example:

> summary(lmodp)$r.squared

[1] 0.99653

but it is clearly ridiculous. There is no plausible reason corrosion loss should sud-
denly drop at 1.7 and thereafter increase rapidly. This is a consequence of overfitting
the data. This illustrates the need not to become too focused on measures of fit like
R2. The fit needs to reflect knowledge of the subject matter and simplicity in model-
ing is a virtue.

8.4 Robust Regression

When the errors are normally distributed, least squares regression is best. But when
the errors follow some other distribution, other methods of model fitting may be
considered. Short-tailed errors are not so much of a problem but long-tailed error
distributions can cause difficulties because a few extreme cases can have a large
effect on the fitted model.

It is important to think about the cause of these extreme values. In some cases,
they are mistakes and we just want some way of automatically excluding them from
the analysis. In other cases, the extreme values really were observed and are part of
the process we are trying to model. Robust regression is designed to estimate the
mean relationship between the predictors and response, EY = Xβ. It doesn’t worry
about where the outliers come from, but the analyst does need to think about this.

We developed methods of detecting outliers in Section 6.2.2. We could use these
methods to remove the largest residuals as outliers and then just use least squares.
This does not work very well if there are multiple outliers as such points can mutually
influence the fit and effectively hide their presence. Furthermore, outlier rejection-
based methods tend not to be statistically efficient for the estimation of β. Robust
regression works better if you are dealing with more than one or two outliers.

In this section, we present two popular types of robust regression.

8.4.1 M-Estimation

M-estimates modify the least squares idea to choose β to minimize:

n

∑
i=1

ρ(yi − xT
i β)

Some possible choices among many for ρ are:

1. ρ(x) = x2 is simply least squares.

2. ρ(x) = |x| is called least absolute deviation (LAD) regression or L1 regression.

3.

ρ(x) =

{

x2/2 if |x|≤ c

c|x|− c2/2 otherwise
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is called Huber’s method and is a compromise between least squares and LAD
regression. c should be a robust estimate of σ. A value proportional to the median
of |ε̂| is suitable.

M-estimation is related to weighted least squares. The normal equations tell us
that:

XT (y−X β̂) = 0

With weights and in non-matrix form this becomes:

n

∑
i=1

wixi j(yi −
p

∑
j=1

xi jβ j) = 0 j = 1, . . . p

Now differentiating the M-estimate criterion with respect to β j and setting to zero
we get:

n

∑
i=1

ρ′(yi −
p

∑
j=1

xi jβ j)xi j = 0 j = 1, . . . p

Now let ui = yi −∑
p
j=1 xi jβ j to get:

n

∑
i=1

ρ′(ui)

ui
xi j(yi −

p

∑
j=1

xi jβ j) = 0 j = 1, . . . p

so we can make the identification of a weight function as w(u) = ρ′(u)/u. We find
for our choices of ρ above that:

1. LS: w(u) is constant and the estimator is simply ordinary least squares.

2. LAD: w(u)= 1/|u|. We see how the weight goes down as u moves away from zero
so that more extreme observations get downweighted. Unfortunately, there is an
asymptote at zero. This makes a weighting approach to fitting an LAD regression
infeasible without some modification.

3. Huber:

w(u) =

{

1 if |u|≤ c

c/|u| otherwise

We can see that this sensibly combines the downweighting of extreme cases with
equal weighting for the middle cases.

There are many other choices for ρ that have been proposed. Computing an M-
estimate requires some iteration because the weights depend on the residuals. The
fitting methods alternate between fitting a WLS and recomputing the weights based
on the residuals until convergence. We can get standard errors via WLS by ˆvar β̂ =
σ̂2(XTWX)−1 but we need to use a robust estimate of σ2.

We demonstrate the methods on the Galápagos Islands data. Using least squares
first:

> data(gala, package="faraway")

> lsmod <- lm(Species ~ Area + Elevation + Nearest + Scruz +

Adjacent,gala)

> sumary(lsmod)
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.06822 19.15420 0.37 0.7154

Area -0.02394 0.02242 -1.07 0.2963

Elevation 0.31946 0.05366 5.95 0.0000038

Nearest 0.00914 1.05414 0.01 0.9932

Scruz -0.24052 0.21540 -1.12 0.2752

Adjacent -0.07480 0.01770 -4.23 0.0003

n = 30, p = 6, Residual SE = 60.975, R-Squared = 0.77

Least squares works well when there are normal errors, but performs poorly for long-
tailed errors. The Huber method is the default choice of the rlm() function, which
is part of the MASS package of Venables and Ripley (2002).

> require(MASS)

> rlmod <- rlm(Species ~ Area + Elevation + Nearest + Scruz + Adjacent

,gala)

> summary(rlmod)

Coefficients:

Value Std. Error t value

(Intercept) 6.361 12.390 0.513

Area -0.006 0.015 -0.421

Elevation 0.248 0.035 7.132

Nearest 0.359 0.682 0.527

Scruz -0.195 0.139 -1.401

Adjacent -0.055 0.011 -4.765

Residual standard error: 29.7 on 24 degrees of freedom

The R2 statistic is not given because it does not make sense in the context of a robust
regression. p-values are not given although we can use the asymptotic normality
of the estimator to make approximate inferences using the t-values. We see that the
same two predictors, Elevation and Adjacent, are significant. The numerical values of
the coefficients have changed somewhat and the standard errors are generally smaller.

It is worth looking at the weights assigned by the final fit. We extract and name
the smallest 10 weights. The remaining weights are all ones.

> wts <- rlmod$w

> names(wts) <- row.names(gala)

> head(sort(wts),10)

SantaCruz SantaMaria SanCristobal Pinta Gardner1

0.17458 0.30783 0.41423 0.53758 0.66130

Espanola Gardner2 Baltra Bartolome Caldwell

0.67950 0.85004 1.00000 1.00000 1.00000

We can see that a few islands are substantially discounted in the calculation of the
robust fit. Provided we do not believe there are mistakes in the data for these cases,
we should think carefully about what might be unusual about these islands.

The main purpose in analyzing these data is likely to explain the relationship be-
tween the predictors and the response. Although the robust fit gives numerically dif-
ferent output, the overall impression of what predictors are significant in explaining
the response is unchanged. Thus the robust regression has provided some measure of
confirmation. Furthermore, it has identified a few islands which are not fit so well by
the model. If there had been more disagreement between the two sets of regression
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outputs, we would know which islands are responsible and deserve a closer look. If
there is a substantial difference between the two fits, we find the robust one more
trustworthy.

Robust regression is not a panacea. M-estimation does not address large leverage
points. It also does not help us choose which predictors to include or what transfor-
mations of the variables to make. For this data, we have seen that a transformation
of the response may be helpful which would completely change the robust fit. Hence
robust methods are just part of the regression modeling toolkit and not a replacement.

We can also do LAD regression using the quantreg package. The default option
does LAD while other options allow for quantile regression:

> require(quantreg)

> l1mod <- rq(Species ~Area+Elevation+Nearest+Scruz+Adjacent, data=

gala)

> summary(l1mod)

Coefficients:

coefficients lower bd upper bd

(Intercept) 1.31445 -19.87777 24.37411

Area -0.00306 -0.03185 0.52800

Elevation 0.23211 0.12453 0.50196

Nearest 0.16366 -3.16339 2.98896

Scruz -0.12314 -0.47987 0.13476

Adjacent -0.05185 -0.10458 0.01739

Again, there is some change in the coefficients. The confidence intervals now
suggest that adjacent is not significant.

For this example, we do not see any big qualitative difference in the coefficients
and for want of evidence to the contrary, we might stick with least squares as the
easiest to work with. Had we seen something different, we would need to find out
the cause. Perhaps some group of observations were not being fit well and the robust
regression excluded these points.

8.4.2 Least Trimmed Squares

The Huber and L1 methods will still fail if the large errors are sufficiently numerous
and extreme in value. For example, very bad data entry errors might be made or
measurement equipment might malfunction in a serious way. We need methods that
still fit the correct data well even in the presence of such problems. Least trimmed
squares (LTS) is an example of a resistant regression method. Resistant methods are
good for dealing with data where we expect a certain number of bad observations
that we want to have no weight in the analysis.

LTS minimizes the sum of squares of the q smallest residuals, ∑
q
i=1 ε̂2

(i) where q is

some number less than n and (i) indicates sorting. This method has a high breakdown

point because it can tolerate a large number of outliers depending on how q is chosen.
Let’s see how it works on the Galapagos data:

> set.seed(123)

> ltsmod <- ltsreg(Species ~ Area + Elevation + Nearest + Scruz +

Adjacent,gala)

> coef(ltsmod)
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(Intercept) Area Elevation Nearest Scruz

12.506684 1.545358 0.016725 0.523487 -0.094072

Adjacent

-0.142592

The default choice of q is ⌊n/2⌋+ ⌊(p+ 1)/2⌋ where ⌊x⌋ indicates the largest
integer less than or equal to x. A genetic algorithm is used by default to compute
the coefficients and is non-deterministic. If you repeat the fit, you will get a slightly
different result. This is why we have set the random number generator seed to ensure
you get the same result as we did. It’s not necessary to set the seed unless you want
to have exact reproducibility.

An exhaustive search method can be used:

> ltsmod <- ltsreg(Species ~ Area + Elevation + Nearest + Scruz +

Adjacent, gala,nsamp="exact")

> coef(ltsmod)

(Intercept) Area Elevation Nearest Scruz

9.381145 1.543658 0.024125 0.811109 -0.117732

Adjacent

-0.197923

This takes only a few seconds on a modern computer. For larger datasets, it will take
much longer so this method might be impractical and the default method might be
required.

This really does make substantial differences to the coefficients. For example,
the Area coefficient is now substantially larger while the Elevation coefficient is
substantially smaller than that seen in the least squares fit. However, we do not have
the standard errors for the LTS regression coefficients. We now use a general method
for inference that is especially useful when such theory is lacking — the bootstrap.
We introduced this method in Section 3.6. The outline of the method is:

1. Generate ε∗ by sampling with replacement from ε̂1, . . . , ε̂n.

2. Form y∗ = X β̂+ ε∗.

3. Compute β̂∗ from (X ,y∗).

We repeat this bootstrap process 1000 times. We construct a matrix of ceofficients in
which to save the results:

> bcoef <- matrix(0,1000,6)

> for(i in 1:1000){

newy <- predict(ltsmod) + residuals(ltsmod)[sample(30,rep=T)]

brg <- ltsreg(newy ~ Area + Elevation + Nearest + Scruz + Adjacent

, gala , nsamp="best")

bcoef[i,] <- brg$coef

}

It is not convenient to use the nsamp="exact" since that would require 1000 times
the time it takes to make the original estimate. This may take an hour or so. Being
impatient, we compromised and used the second best option of nsamp="best". This
likely means that our bootstrap estimates of variability will be somewhat on the high
side. This illustrates a common practical difficulty with the bootstrap — it can take a
long time to compute. Fortunately, this problem recedes as processor speeds increase.
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We can make a 95% confidence interval for this parameter by taking the empirical
quantiles:

> colnames(bcoef) <- names(coef(ltsmod))

> apply(bcoef,2,function(x) quantile(x, c(0.025,0.975)))

(Intercept) Area Elevation Nearest Scruz Adjacent

2.5% 2.0868 1.4976 -0.015118 0.18872 -0.269049 -0.23375

97.5% 24.9500 1.6230 0.065377 1.94555 0.080291 -0.15138

Zero lies outside the interval for Area, Nearest and Adjacent so we are confident
that there is an effect for these predictors although the Nearest is marginal. We
can get a better picture of the distribution by looking at the density and marking the
confidence interval. The ggplot2 package produces clear density plots:

> require(ggplot2)

> bcoef <- data.frame(bcoef)

> p1 <- ggplot(bcoef, aes(x = Area)) + geom_density() + xlim(1.45,

1.65)

> p1 + geom_vline(xintercept=c(1.4976, 1.6230), linetype="dashed")

> p2 <- ggplot(bcoef, aes(x = Adjacent)) + geom_density() + xlim

(-0.25, -0.13)

> p2 + geom_vline(xintercept=c(-0.23375, -0.15138), linetype="dashed")

See Figure 8.3. We see that the distribution is more peaked than a normal distribution
with some long tails. This would be more accurate if we took more bootstrap resam-
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Figure 8.3 Bootstrap distribution of β̂Area and β̂Ad jacent with 95% confidence inter-
vals.

ples although 1000 is sufficient for our needs here. The conclusion is that the area
variable is significant. That is in contrast to the conclusion from the least squares
fit. Which estimates are best? An examination of the Cook distances for the least
squares fit shows the island of Isabela to be very influential. If we exclude this island
from the least squares fit, we find that:
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> limod <- lm(Species ~ Area + Elevation + Nearest + Scruz + Adjacent

, gala,subset=(row.names(gala) != "Isabela"))

> sumary(limod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 22.5861 13.4019 1.69 0.1055

Area 0.2957 0.0619 4.78 0.000080

Elevation 0.1404 0.0497 2.82 0.0096

Nearest -0.2552 0.7217 -0.35 0.7269

Scruz -0.0901 0.1498 -0.60 0.5534

Adjacent -0.0650 0.0122 -5.32 0.000021

n = 29, p = 6, Residual SE = 41.646, R-Squared = 0.87

This fit is much closer to the LTS fit in that Area and Adjacent are very significant
predictors. Thus, there are two routes to the same goal. We can use regression
diagnostics in conjunction with least squares to identify bad or unusual points or we
can use robust methods. The former approach is more flexible and allows for the
discovery of a wider class of problems, but it is time consuming and does require
human intervention. When data need to be quickly analyzed, perhaps without expert
assistance or when large numbers of datasets need to be fitted, robust methods give
some protection against aberrant data.

Another interesting point is that the M-estimate failed to identify the unusual
island, Isabela, and gave similar results to the full data least squares fit. We can
show similar behavior on another dataset — consider the star data presented in Sec-
tion 6.2.2. We compute the least squares, Huber and LTS fits and display them in
Figure 8.4:

> data(star, package="faraway")

> plot(light ~ temp, star)

> gs1 <- lm(light ~ temp, star)

> abline(coef(gs1))

> gs2 <- rlm(light ~ temp, star)

> abline(coef(gs2), lty=2)

> gs3 <- ltsreg(light ~ temp, star, nsamp="exact")

> abline(coef(gs3), lty=5)

Only LTS managed to capture the trend in the main group of points. The Huber
estimate is almost the same as the least squares estimate.

Summary

1. Robust estimators provide protection against long-tailed errors, but they cannot
overcome problems with the choice of model and its variance structure.

2. Robust estimates supply β̂ and possibly standard errors without the associated
inferential methods. Software and methodology for this inference require extra
work. The bootstrap is a general-purpose inferential method which is useful in
these situations.

3. Robust methods can be used in addition to least squares as a confirmatory method.
You have cause to worry if the two estimates are far apart. The source of the
difference should be investigated.
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Figure 8.4 Regression fits compared. Least squares is the solid line, Huber is the
dotted line and LTS is the dashed line. Only LTS finds the fit in the bulk of the data.

4. Robust estimates are useful when data need to be fit automatically without the
intervention of a skilled analyst.

Exercises

1. Researchers at National Institutes of Standards and Technology (NIST) collected
pipeline data on ultrasonic measurements of the depth of defects in the Alaska
pipeline in the field. The depth of the defects were then remeasured in the lab-
oratory. These measurements were performed in six different batches. It turns
out that this batch effect is not significant and so can be ignored in the analysis
that follows. The laboratory measurements are more accurate than the in-field
measurements, but more time consuming and expensive. We want to develop a
regression equation for correcting the in-field measurements.

(a) Fit a regression model Lab ~ Field. Check for non-constant variance.

(b) We wish to use weights to account for the non-constant variance. Here we
split the range of Field into 12 groups of size nine (except for the last group
which has only eight values). Within each group, we compute the variance of
Lab as varlab and the mean of Field as meanfield. Supposing pipeline

is the name of your data frame, the following R code will make the needed
computations:

> i <- order(pipeline$Field)

> npipe <- pipeline[i,]

> ff <- gl(12,9)[-108]

> meanfield <- unlist(lapply(split(npipe$Field,ff),mean))

> varlab <- unlist(lapply(split(npipe$Lab,ff),var))
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Suppose we guess that the the variance in the response is linked to the predictor
in the following way:

var(Lab) = a0Fielda1

Regress log(varlab) on log(meanfield) to estimate a0 and a1. (You might
choose to remove the last point.) Use this to determine appropriate weights in
a WLS fit of Lab on Field. Show the regression summary.

(c) An alternative to weighting is transformation. Find transformations on Lab

and/or Field so that in the transformed scale the relationship is approximately
linear with constant variance. You may restrict your choice of transformation
to square root, log and inverse.

2. Using the divusa data, fit a regression model with divorce as the response and
unemployed, femlab, marriage, birth and military as predictors.

(a) Make two graphical checks for correlated errors. What do you conclude?

(b) Allow for serial correlation with an AR(1) model for the errors. (Hint: Use
maximum likelihood to estimate the parameters in the GLS fit by gls(...,

method="ML", ...)). What is the estimated correlation and is it significant?
Does the GLS model change which variables are found to be significant?

(c) Speculate why there might be correlation in the errors.

3. For the salmonella dataset, fit a linear model with colonies as the response and
log(dose+1) as the predictor. Check for lack of fit.

4. For the cars dataset, fit a linear model with distance as the response and speed

as the predictor. Check for lack of fit.

5. Using the stackloss data, fit a model with stack.loss as the response and the
other three variables as predictors using the following methods:

(a) Least squares

(b) Least absolute deviations

(c) Huber method

(d) Least trimmed squares

Compare the results. Now use diagnostic methods to detect any outliers or in-
fluential points. Remove these points and then use least squares. Compare the
results.

6. Using the cheddar data, fit a linear model with taste as the response and the
other three variables as predictors.

(a) Suppose that the observations were taken in time order. Create a time variable.
Plot the residuals of the model against time and comment on what can be seen.

(b) Fit a GLS model with same form as above but now allow for an AR(1) corre-
lation among the errors. Is there evidence of such a correlation?

(c) Fit a LS model but with time now as an additional predictor. Investigate the
significance of time in the model.

(d) The last two models have both allowed for an effect of time. Explain how they
do this differently.
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(e) Suppose you were told, contrary to prior information, that the observations are
not in time order. How would this change your interpretation of the model
from (c)?

7. The crawl dataset contains data on a study looking at the age when babies learn
to crawl as a function of ambient temperatures. There is additional information
about the number of babies studied each month and the variation in the response.
Make an appropriate choice of weights to investigate the relationship between
crawling age and temperature.

8. The gammaray dataset shows the x-ray decay light curve of a gamma ray burst.
Build a model to predict the flux as a function time that uses appropriate weights.

9. Use the fat data, fitting the model described in Section 4.2.

(a) Fit the same model but now using Huber’s robust method. Comment on any
substantial differences between this model and the least squares fit.

(b) Identify which two cases have the lowest weights in the Huber fit. What is
unusual about these two points?

(c) Plot weight (of the man) against height. Identify the two outlying cases. Are
these the same as those identified in the previous question? Discuss.



Chapter 9

Transformation

Transformations of the response and/or predictors can improve the fit and correct
violations of model assumptions such as non-constant error variance. We may also
consider adding additional predictors that are functions of the existing predictors like
quadratic or cross-product terms.

9.1 Transforming the Response

We start with some general considerations about transforming the response. Suppose
that you are contemplating a logged response in a simple regression situation:

logy = β0 +β1x+ ε

In the original scale of the response, this model becomes:

y = exp(β0 +β1x) · exp(ε) (9.1)

In this model, the errors enter multiplicatively and not additively as they usually do.
So the use of standard regression methods for the logged response model requires
that we believe the errors enter multiplicatively in the original scale. Alternatively,
for small ε, exp(ε)≈ 1+ ε. Substituting this into (9.1) would result in a model with
additive errors but with non-constant variance.

If we propose the model:

y = exp(β0 +β1x)+ ε

then we cannot linearize this model directly and nonlinear regression methods might
need to be applied. However, we might also use the exp(ε)≈ 1+ε approximation to
get a weighted linear model.

In practice, we may not know how the errors enter the model additively, multi-
plicatively or otherwise. The best approach is to try different transforms to get the
structural form of the model right and worry about the error component later. We can
then check the residuals to see whether they satisfy the conditions required for linear
regression. If there is a problem, we have several potential solutions as discussed in
earlier chapters.

Although you may transform the response, you will probably need to express
predictions in the original scale. This requires back transforming. For example, in
the logged model above, your prediction would be exp(ŷ0). If your prediction con-
fidence interval in the logged scale was [l,u], then you would use [exp l,expu]. This

133
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interval will not be symmetric, but this may be desirable. For example, the untrans-
formed prediction intervals for the Galápagos data went below zero in Section 4.1.
Transformation of the response avoids this problem.

Regression coefficients will need to be interpreted with respect to the transformed
scale. There is no straightforward way of back transforming them to values that
can be interpreted in the original scale. You cannot directly compare regression
coefficients for models where the response transformation is different. Difficulties of
this type may dissuade you from transforming the response even if this requires the
use of another type of model, such as a generalized linear model.

When you use a log transformation on the response, the regression coefficients
have a particular interpretation:

log ŷ = β̂0 + β̂1x1 + · · ·+ β̂pxp

ŷ = eβ̂0eβ̂1x1 · · ·eβ̂pxp

An increase of one in x1 would multiply the predicted response (in the original scale)

by eβ̂1 . Thus when a log scale is used, the regression coefficients can be interpreted
in a multiplicative rather than an additive manner. A useful approximation for quick
interpretations is that log(1+ x) ≈ x for small values of x. So for example, suppose

β̂1 = 0.09; then an increase of one in x1 would lead to about a 0.09 increase in logy

which is a 9% increase in y. The approximation is quite good up to about ±0.25.

Box–Cox transformation

The Box–Cox method is a popular way to determine a transformation on the
response. It is designed for strictly positive responses and chooses the transformation
to find the best fit to the data. The method transforms the response y → gλ(y) where
the family of transformations indexed by λ is:

gλ(y) =

{

yλ−1
λ λ ̸= 0

logy λ = 0

For fixed y > 0, gλ(y) is continuous in λ. Choose λ using maximum likelihood. The
profile log-likelihood assuming normality of the errors is:

L(λ) =−
n

2
log(RSSλ/n)+(λ−1)∑ logyi

where RSSλ is the residual sum of squares when gλ(y) is the response. You can

compute λ̂ numerically to maximize this. If the purpose of the regression model is
prediction, then use yλ as the response (no need to use (yλ −1)/λ, as the rescaling is
just so gλ → log as λ→ 0 which maintains continuity in the likelihood). If explaining
the model is important, you should round λ to the nearest interpretable value. For
example, if λ̂ = 0.46, it would be hard to explain what this new response means, but√

y might be easier.
Transforming the response can make the model harder to interpret so we do not
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want to do it unless it is really necessary. One way to check this is to form a confi-
dence interval for λ. A 100(1−α)% confidence interval for λ is:

{λ : L(λ)> L(λ̂)−
1

2
χ2

1
(1−α)}

This interval can be derived by inverting the likelihood ratio test of the hypothesis
that H0 : λ = λ0 which uses the statistic 2(L(λ̂)− L(λ0)) having approximate null
distribution χ2

1. The confidence interval also tells you how much it is reasonable to
round λ for the sake of interpretability.

We check whether the response in the savings data needs transformation. We will
need the boxcox function from the MASS package:

> require(MASS)

Try it out on the savings dataset and plot the results:

> data(savings, package="faraway")

> lmod <- lm(sr ~ pop15+pop75+dpi+ddpi,savings)

> boxcox(lmod, plotit=T)

> boxcox(lmod, plotit=T, lambda=seq(0.5,1.5,by=0.1))
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Figure 9.1 Log-likelihood plots for the Box–Cox transformation of the savings
data.

The first plot shown in Figure 9.1 is too broad. We narrowed the range of λ in
the second plot so that we can read off the confidence interval more easily. The
confidence interval for λ runs from about 0.6 to about 1.4. We can see that there is
no good reason to transform.

Now consider the Galápagos Islands dataset analyzed earlier:

> data(gala, package="faraway")
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> lmod <- lm(Species ~ Area + Elevation + Nearest + Scruz + Adjacent,

gala)

> boxcox(lmod, lambda=seq(-0.25,0.75,by=0.05),plotit=T)

The plot is shown in the left panel of Figure 9.2. We see that perhaps a cube root
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Figure 9.2 Log-likelihood plot for the Box–Cox transformation of the Galápagos
data is shown on the left and the log-additive transformation on the leafburn data
is shown on the right.

transformation might be best here. A square root is also a possibility, as this falls just
within the confidence intervals. Certainly there is a strong need to transform.

Some general considerations concerning the Box–Cox method are:

1. The Box–Cox method gets upset by outliers — if you find λ̂ = 5, then this is
probably the reason — there can be little justification for actually making such an
extreme transformation.

2. If some yi < 0, we can add a constant to all the y. This can work provided the
constant is small, but this is an inelegant solution.

3. If maxi yi/mini yi is small, then the Box–Cox will not have much real effect be-
cause power transforms are well approximated by linear transformations over
short intervals far from the origin.

4. There is some doubt whether the estimation of λ counts as an extra parameter to
be considered in the degrees of freedom. This is a difficult question since λ is not
a linear parameter and its estimation is not part of the least squares fit.

The Box–Cox method is not the only way of transforming the predictors. An-
other family of transformations is given by gα(y) = log(y+α). We can illustrate
the value of this using some data from Steel and Torrie (1980) on the burn time of
tobacco leaves as a function of three chemical constituents. The logtrans function
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in the MASS package performs the computation in a similar manner to the Box-Cox
procedure:

> lmod <- lm(burntime ~ nitrogen+chlorine+potassium, leafburn)

> logtrans(lmod,plotit=TRUE, alpha=seq(-min(leafburn$burntime)

+0.001,0,by=0.01))

The plot is shown in the right panel of Figure 9.2. The Box-Cox analysis of this
model recommends λ̂ = −0.34 and the confidence interval bounds this away from
zero so it seems we cannot use the more interpretable log transformation. But the
plot shows that we can use a log transformation provided we subtract about 0.85
from the response. This value may be interpretable as a start-up time for the fire to
get going.

For responses that are proportions (or percentages), the logit transformation,
log(y/(1− y)), is often used, while for responses that are correlations, Fisher’s z
transform, y = 0.5log((1+ y)/(1− y)), is worth considering.

9.2 Transforming the Predictors

You can take a Box–Cox style approach for each of the predictors, choosing the
transformation to minimize the RSS. However, this usually not the best way to find
good transformations on the predictors. You can also use graphical methods such
as partial residual plots to select transforming the predictors. These methods are
designed to replace x in the model with f(x) for some chosen f. The methods we
consider below are more general in that they replace x with more than one term —
f(x) + g(x) + .... This allows more flexibility since each additional term carries
a parameter.

9.3 Broken Stick Regression

Sometimes we have reason to believe that different linear regression models apply
in different regions of the data. For example, in the analysis of the savings data, we
observed that there were two groups in the data and we might want to fit a different
model to the two parts. Suppose we focus attention on just the pop15 predictor for
ease of presentation. We fit the two regression models depending on whether pop15
is greater or less than 35%. The two fits are seen in Figure 9.3.

> lmod1 <- lm(sr ~ pop15, savings, subset=(pop15 < 35))

> lmod2 <- lm(sr ~ pop15, savings, subset=(pop15 > 35))

> plot(sr ~ pop15,savings,xlab="Pop’n under 15", ylab="Savings Rate")

> abline(v=35,lty=5)

> segments(20,lmod1$coef[1]+lmod1$coef[2]*20,35, lmod1$coef[1]+lmod1$

coef[2]*35)

> segments(48,lmod2$coef[1]+lmod2$coef[2]*48,35, lmod2$coef[1]+lmod2$

coef[2]*35)

A possible objection to this subsetted regression fit is that the two parts of the fit
do not meet at the join. If we believe the fit should be continuous as the predictor
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Figure 9.3 Subset regression fit is shown with the solid line, while the broken stick
regression is shown with the dotted line.

varies, we should consider the broken stick regression fit. Define two basis functions:

Bl(x) =

{

c− x if x < c

0 otherwise

and:

Br(x) =

{

x− c if x > c

0 otherwise

where c marks the division between the two groups. Bl and Br form a first-order
spline basis with a knotpoint at c. Sometimes Bl and Br are called hockey-stick
functions because of their shape. We can now fit a model of the form:

y = β0 +β1Bl(x)+β2Br(x)+ ε

using standard regression methods. The two linear parts are guaranteed to meet at
c. Notice that this model uses only three parameters in contrast to the four total
parameters used in the subsetted regression illustrated before. A parameter has been
saved by insisting on the continuity of the fit at c.

We define the two hockey-stick functions, compute and display the fit:

> lhs <- function(x) ifelse(x < 35,35-x,0)

> rhs <- function(x) ifelse(x < 35,0,x-35)

> lmod <- lm(sr ~ lhs(pop15) + rhs(pop15), savings)

> x <- seq(20,48,by=1)

> py <- lmod$coef[1] + lmod$coef[2]*lhs(x) + lmod$coef[3]*rhs(x)

> lines(x,py,lty=2)

The two (dotted) lines now meet at 35, as shown in Figure 9.3. The intercept of this
model is the value of the response at the join.
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We might question which fit is preferable in this particular instance. For the high
pop15 countries, we see that the imposition of continuity causes a change in sign for
the slope of the fit. We might argue that because the two groups of countries are so
different and there are so few countries in the middle region, we might not want to
impose continuity at all.

We can have more than one knotpoint simply by defining more basis functions
with different knotpoints. Broken stick regression is sometimes called segmented

regression. Allowing the knotpoints to be parameters is worth considering, but this
will result in a nonlinear model. This can be implemented using the segmented

package in R which is derived from Muggeo (2003).

9.4 Polynomials

Another way of generalizing the Xβ part of the model is to add polynomial terms. In
the one-predictor case, we have:

y = β0 +β1x+ · · ·+βdxd + ε

which allows for a more flexible relationship. We usually do not believe the polyno-
mial exactly represents any underlying reality, but it can allow us to model expected
features of the relationship. A quadratic term allows for a predictor to have an opti-
mal setting. For example, there may be a best temperature for baking bread – a hotter
or colder temperature may result in a less tasty outcome. If you believe a predictor
behaves in this manner, it makes sense to add a quadratic term.

There are two common ways to choose d. We can keep adding terms until the
added term is not statistically significant. Alternatively, we can start with a large d

and eliminate non-statistically significant terms starting with the highest order term.
Let’s see if we can use polynomial regression on the ddpi variable in the savings
data. First, fit a linear model:

> summary(lm(sr ~ ddpi,savings))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.883 1.011 7.80 4.5e-10

ddpi 0.476 0.215 2.22 0.031

The p-value of ddpi is significant so move on to a quadratic term:

> summary(lm(sr ~ ddpi+I(ddpi^2),savings))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.1304 1.4347 3.58 0.00082

ddpi 1.7575 0.5377 3.27 0.00203

I(ddpi^2) -0.0930 0.0361 -2.57 0.01326

Again the p-value of ddpi2 is significant so move on to a cubic term:

> summary(lm(sr ~ ddpi+I(ddpi^2)+I(ddpi^3),savings))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.145360 2.198606 2.34 0.024

ddpi 1.746017 1.380455 1.26 0.212
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I(ddpi^2) -0.090967 0.225598 -0.40 0.689

I(ddpi^3) -0.000085 0.009374 -0.01 0.993

The p-value of ddpi3 is not significant so stick with the quadratic. You can check
that starting from a large model, say starting from the fourth power, and working
downward gives the same result.

Usually it is a bad idea to eliminate lower order terms from the model before the
higher order terms even if they are not statistically significant. An additive change
in scale would change the t-statistic of all but the highest order term. We would not
want the conclusions of our study to be sensitive to such changes in the scale which
ought to be inconsequential. For example, suppose we transform ddpi by subtracting
10 and refit the quadratic model:

> savings <- data.frame(savings,mddpi=savings$ddpi-10)

> summary(lm(sr ~ mddpi+I(mddpi^2),savings))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.4070 1.4240 9.41 2.2e-12

mddpi -0.1022 0.3027 -0.34 0.737

I(mddpi^2) -0.0930 0.0361 -2.57 0.013

We see that the quadratic term remains unchanged, but the linear term is now in-
significant. Since there is often no necessary importance to zero on a scale of mea-
surement, there is no good reason to remove the linear term in this model but not
in the previous version. If you do remove lower order terms from, say, a quadratic
model, be aware that this has some special meaning. Setting the intercept to zero
means the regression passes through the origin while setting the linear term to zero
would mean that the response is optimized at a predictor value of zero.

You have to refit the model each time a term is removed which is inconvenient and
for large d there can be a problem with numerical stability. Orthogonal polynomials
get around this problem by defining:

z1 = a1 +b1x

z2 = a2 +b2x+ c2x2

z3 = a3 +b3x+ c3x2 +d3x3

etc. where the coefficients a, b, c, . . . are chosen so that zT
i z j = 0 when i ̸= j. The ex-

pressions z are called orthogonal polynomials. The value of orthogonal polynomials
has declined with advances in computing speeds although they are still worth know-
ing about because of their numerical stability and ease of use. The poly() function
constructs orthogonal polynomials:

> lmod <- lm(sr ~ poly(ddpi,4),savings)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.6710 0.5846 16.54 <2e-16

poly(ddpi , 4)1 9.5590 4.1338 2.31 0.025

poly(ddpi , 4)2 -10.4999 4.1338 -2.54 0.015

poly(ddpi , 4)3 -0.0374 4.1338 -0.01 0.993

poly(ddpi , 4)4 3.6120 4.1338 0.87 0.387

n = 50, p = 5, Residual SE = 4.134, R-Squared = 0.22
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We can come to the same conclusion as above, that the quadratic model is best, with
just this summary.

You can also define polynomials in more than one variable. These are sometimes
called response surface models. A second degree model would be:

y = β0 +β1x1 +β2x2 +β11x2
1 +β22x2

2 +β12x1x2

an example of which could be fit as:

> lmod <- lm(sr ~ polym(pop15,ddpi,degree=2),savings)

We can construct a perspective plot of the fitted surface as follows. We compute
the fit on a 10× 10 grid of values covering the range of the predictors and see the
result in Figure 9.4.

> pop15r <- seq(20, 50, len=10)

> ddpir <- seq(0, 20, len=10)

> pgrid <- expand.grid(pop15=pop15r, ddpi=ddpir)

> pv <- predict(lmod, pgrid)

> persp(pop15r, ddpir, matrix(pv, 10, 10), theta=45, xlab="Pop under

15", ylab="Growth", zlab = "Savings rate", ticktype="detailed",

shade = 0.25)
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Figure 9.4 Perspective plot of the quadratic surface fit to the saving data.

9.5 Splines

Polynomials have the advantage of smoothness, but the disadvantage is that each
data point affects the fit globally. This is because the power functions used for the
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polynomials take nonzero values across the whole range of the predictor. In contrast,
the broken stick regression method localizes the influence of each data point to its
particular segment which is good, but we do not have the same smoothness as with
the polynomials. There is a way we can combine the beneficial aspects of both these
methods — smoothness and local influence — by using B-spline basis functions.

We can see why splines might be helpful by using a simulated example. Suppose
we know the true model is:

y = sin3(2πx3)+ ε, ε ∼ N(0,(0.1)2)

The advantage of using simulated data is that we can see how close our methods come
to the truth. We generate the data and display them in the first plot of Figure 9.5.

> funky <- function(x) sin(2*pi*x^3)^3

> x <- seq(0,1,by=0.01)

> y <- funky(x) + 0.1*rnorm(101)

> matplot(x,cbind(y,funky(x)),type="pl",ylab="y",pch=20, lty=1, col=1)
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Figure 9.5 Data and true function shown on the left. Orthogonal polynomial of
order 4 (dashed) and order 12 (solid) shown on the right.

We see how orthogonal polynomial bases of orders 4 and 12 do in fitting these
data:

> g4 <- lm(y ~ poly(x,4))

> g12 <- lm(y ~ poly(x,12))

> matplot(x,cbind(y,g4$fit,g12$fit),type="pll", ylab="y",lty=c(1,2),

pch=20, col=1)

The two fits are shown in the second panel of Figure 9.5. We see that order 4 is a
clear underfit; order 12 is much better although the fit is too wiggly in the first section
and misses the point of inflection around x = 0.8.
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We may define a cubic B-spline basis on the interval [a,b] by the following re-
quirements on the interior basis functions with knotpoints at t1, . . . , tk:

1. A given basis function is nonzero on an interval defined by four successive knots
and zero elsewhere. This property ensures the local influence property.

2. The basis function is a cubic polynomial for each subinterval between successive
knots.

3. The basis function is continuous and is also continuous in its first and second
derivatives at each knotpoint. This property ensures the smoothness of the fit.

4. The basis function integrates to one over its support.

The basis functions at the ends of the interval are defined a little differently to
ensure continuity in derivatives at the edge of the interval. A full definition of B-
splines and more details about their properties may be found in de Boor (2002). The
broken stick regression is an example of the use of linear splines.

We now create the B-spline basis. You need to have three additional knots at the
start and end to get the right basis. I have chosen to the knot locations to put more in
the regions of greater curvature. I have used 12 basis functions for comparability to
the orthogonal polynomial fit:

> require(splines)

> knots <- c(0,0,0,0,0.2,0.4,0.5,0.6,0.7,0.8,0.85,0.9,1,1,1,1)

> bx <- splineDesign(knots,x)

> lmodb <- lm(y ~ bx -1)

> matplot(x, bx, type="l", col=1)

> matplot(x, cbind(y,lmodb$fit), type="pl", ylab="y", pch=20,lty=1,

col=1)

The basis functions are seen in the first panel of Figure 9.6 while the fit appears in
the second panel. We see that the fit comes very close to the truth. Regression splines
are useful for fitting functions with some flexibility provided we have enough data.
We can form basis functions for all the predictors in our model but we need to be
careful not to use up too many degrees of freedom.

A related alternative to regression splines is smoothing splines. Suppose the
model is yi = f (xi)+ εi, so in the spirit of least squares, we might choose f̂ to min-
imize the sum of squares. Unfortunately, the unhelpful solution is f̂ (xi) = yi. This
“join the dots” regression is almost certainly too rough. Instead, suppose we choose
f̂ to minimize a modified least squares criterion:

1

n ∑(Yi − f (xi))
2 +λ

∫
[ f ′′(x)]2dx

where λ > 0 controls the amount of smoothing and
∫
[ f ′′(x)]2dx is a roughness

penalty. When f is rough, the penalty is large, but when f is smooth, the penalty
is small. Thus the two parts of the criterion balance fit against smoothness. This is
the smoothing spline fit. We illustrate this in Figure 9.7. We have used the default
choice of smoothing which is derived from crossvalidation. The point of inflexion is
captured well but the smoother part of the function on the left is fit too roughly.
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Figure 9.6 Cubic spline basis function on the left, cubic spline fit to the data on the
right.

> ssf <- smooth.spline(x,y)

> matplot(x,cbind(y,ssf$y),type="pl",ylab="y", lty=1, pch=20, col=1)

9.6 Additive Models

Searching for good transformations on the predictors is difficult when there are mul-
tiple predictors. Changing the transformation on one predictor may change the best
choice of transformation on another predictor. Fortunately, there is a way to simulta-
neously choose the transformations. An additive model takes the form :

y = α+ f1(X1)+ f2(X2)+ · · ·+ fp(Xp)+ ε

The linear terms of the form βiXi have been replaced with more flexible functional
forms fi(Xi). The mgcv package can be used to fit such models:

> require(mgcv)

> gamod <- gam(sr ~ s(pop15) + s(pop75) + s(dpi) + s(ddpi), data=

savings)

> plot(gamod)

The fitted functions fi are computed using smoothing splines and are shown in Fig-
ure 9.8. Crossvalidation is used to choose the amount of smoothing. For dpi and
ddpi the chosen amount of smoothing was as smooth as possible, producing a linear
fit. This is also almost true for pop75 such that a linear approximation would be
very close. The interesting fit occurs for pop15. There is a suggestion of a minimum
around 38% although given the width of the 95% confidence band and the sparsity of
data as shown by the rug at the bottom of the display, we cannot be sure about this.
It would also be possible to draw a straight line between the two bands, indicating
that a linear fit may be adequate.
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Figure 9.7 Smoothing spline fit to the simulated data.

9.7 More Complex Models

Regression analysis relies on the skill of the human analyst to make judgements
about graphical displays and to incorporate subject area knowledge. When the pur-
pose of the analysis is explanation or the sample size is relatively small, regression
analysis compares well to more complex alternatives. The linear model produces
interpretable parameters which are essential if we want to gain some understanding
of the relationship between the variables. If we do not have much data, it is hard to
justify a more complex approach.

For larger datasets where prediction is the goal, more recently developed complex
models using methods from machine learning may be more effective. This is because
these methods will be able to fit the data more flexibly while keeping the number of
parameters under control. See Friedman, Hastie, and Tibshirani (2008).

Exercises

1. The aatemp data come from the U.S. Historical Climatology Network. They are
the annual mean temperatures (in degrees F) in Ann Arbor, Michigan going back
about 150 years.

(a) Is there a linear trend?
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Figure 9.8 Fitted functions using the additive model for the savings data. The 95%
confidence bands are shown as dotted lines.

(b) Observations in successive years may be correlated. Fit a model that estimates
this correlation. Does this change your opinion about the trend?

(c) Fit a polynomial model with degree 10 and use backward elimination to reduce
the degree of the model. Plot your fitted model on top of the data. Use this
model to predict the temperature in 2020.

(d) Suppose someone claims that the temperature was constant until 1930 and then
began a linear trend. Fit a model corresponding to this claim. What does the
fitted model say about this claim?

(e) Make a cubic spline fit with six basis functions evenly spaced on the range.
Plot the fit in comparison to the previous fits. Does this model fit better than
the straight-line model?

2. The cornnit data on the relationship between corn yield (bushels per acre) and
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nitrogen (pounds per acre) fertilizer application were studied in Wisconsin in
1994. Use transformations to find a good model for predicting yield from ni-
trogen. Use a goodness-of-fit test to check your model.

3. Using the ozone data, fit a model with O3 as the response and temp, humidity and
ibh as predictors. Use the Box–Cox method to determine the best transformation
on the response.

4. Use the pressure data to fit a model with pressure as the response and temperature
as the predictor using transformations to obtain a good fit.

5. Use transformations to find a good model for volume in terms of girth and
height using the trees data.

6. Use the odor data for this question.

(a) Fit a second order response surface for the odor response using the other three
variables as predictors. How many parameters does this model use and how
many degrees of freedom are left?

(b) Fit a model for the same response but now excluding any interaction terms
but including linear and quadratic terms in all three predictors. Compare this
model to the previous one. Is this simplification justified?

(c) Use the previous model to determine the values of the predictors which result
in the minimum predicted odor.

7. Use the cheddar data for this question.

(a) Fit an additive model for a response of taste with the other three variables as
predictors. Is any transformation of the predictors suggested?

(b) Use the Box–Cox method to determine an optimal transformation of the re-
sponse. Would it be reasonable to leave the response untransformed?

(c) Use the optimal transformation of the response and refit the additive model.
Does this make any difference to the transformations suggested for the predic-
tors?

8. Use the cars data with distance as the response and speed as the predictor.

(a) Plot distance against speed.

(b) Show a linear fit to the data on the plot.

(c) Show a quadratic fit to the data one the plot.

(d) Now use sqrt(dist) as the response and fit a linear model. Show the fit on
the same plot.

(e) Compute the default smoothing spline fit to the plot and display on a fresh plot
of the data. How does it compare to the previous fits?



Chapter 10

Model Selection

For all but the simplest cases we are confronted with a choice of possible regression
models for our data. We may even have expanded the choice of possible models by
introducing new variables derived from those available originally by making trans-
formations, creating interactions or adding polynomial terms. In this chapter, we
consider the problem of selecting the “best” subset of predictors.

More information should only be helpful so one might wonder why we do not
simply include all the available variables in the model. However, we may wish to
consider a smaller model for several reasons. The principle of Occam’s Razor states
that among several plausible explanations for a phenomenon, the simplest is best.
Applied to regression analysis, this implies that the smallest model that fits the data
adequately is best.

Another consideration is that unnecessary predictors will add noise to the estima-
tion of other quantities that interested us. Degrees of freedom will be wasted. More
precise estimates and predictions might be achieved with a smaller model. In some
cases, collecting data on additional variables can cost time or money so a smaller
prediction model may be more economical.

Model selection is a process that should not be separated from the rest of the
analysis. Other parts of the data analysis can have an impact. For example, outliers
and influential points can do more than just change the current model — they can
change the model we select. It is important to identify such points. Also transforma-
tions of the variables can have an impact on the model selected. Some iteration and
experimentation are often necessary to find better models.

Although Occam’s Razor is a compelling heuristic, we must focus our effort on
the main objective of regression modelling. We might obtain better predictions by
using larger models so although smaller models might be appealing, we do not wish
to compromise on predictive ability. For investigations that focus on the explanatory
effect of the predictors, one should be cautious about the use of automated variable
selection procedures. In such cases, attention is put on just a few predictors of interest
while the remaining predictors are not of primary interest but must be controlled for.
It would be unwise to expect an automated procedure to do this reliably.

When comparing potential models, we might use hypothesis testing methods to
make a choice or use some criterion-based method on the relative fit to decide. We
consider both these approaches in this chapter.

Even with a moderate number of potential predictors, the possible combinations
of variables can become very large. Procedures that consider all possible combina-
tions may not be practical and we must step through the space of possible models in

149
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an incremental way. In some situations, the model space is structued hierarchically
which constrains the reasonable choice of model.

10.1 Hierarchical Models

Some models have a natural hierarchy. For example, in polynomial models, x2 is
a higher order term than x. When selecting variables, it is important to respect the
hierarchy. Lower order terms should not usually be removed from the model before
higher order terms in the same variable. There are two common situations where this
can arise:

Consider the polynomial model:

y = β0 +β1x+β2x2 + ε

Suppose we fit this model and find that the regression summary shows that the term
in x is not significant but the term in x2 is. If we then remove the x term, our reduced
model would become:

y = β0 +β2x2 + ε

However, suppose we make a scale change x → x+a; then the model would become:

y = β0 +β2a2 +2β2ax+β2x2 + ε

The first order x term has now reappeared. Scale changes should not make any im-
portant change to the model, but in this case an additional term has been added. This
is not desirable. This illustrates why we should not remove lower order terms in the
presence of higher order terms. We would not want interpretation to depend on the
choice of scale. Removal of the first-order term here corresponds to the hypothesis
that the predicted response is symmetric about and has an optimum at x = 0. Usu-
ally this hypothesis is not meaningful and should not be considered. Only when this
hypothesis makes sense in the context of the particular problem could we justify the
removal of the lower order term.

For models with interactions, consider the example of a second-order response
surface model:

y = β0 +β1x1 +β2x2 +β11x2
1 +β22x2

2 +β12x1x2 + ε

We would not normally consider removing the x1x2 interaction term without simul-
taneously considering the removal of the x2

1 and x2
2 terms. A joint removal would

correspond to the clearly meaningful comparison of a quadratic surface and a linear
one. Just removing the x1x2 term would correspond to a surface that is aligned with
the coordinate axes. This is harder to interpret and should not be considered unless
some particular meaning can be attached. Any rotation of the predictor space would
reintroduce the interaction term and, as with the polynomials, we would not ordinar-
ily want our model interpretation to depend on the particular basis for the predictors.
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10.2 Testing-Based Procedures

Backward Elimination is the simplest of all variable selection procedures and can be
easily implemented without special software. In situations where there is a complex
hierarchy, backward elimination can be run manually while taking account of what
variables are eligible for removal.

We start with all the predictors in the model and then remove the predictor with
highest p-value greater than αcrit . Next refit the model and remove the remaining
least significant predictor provided its p-value is greater than αcrit . Sooner or later,
all “nonsignificant” predictors will be removed and the selection process will be com-
plete.

The αcrit is sometimes called the “p-to-remove” and does not have to be 5%. If
prediction performance is the goal, then a 15 to 20% cutoff may work best, although
methods designed more directly for optimal prediction should be preferred.

Forward Selection just reverses the backward method. We start with no variables
in the model and then for all predictors not in the model, we check their p-values if
they are added to the model. We choose the one with lowest p-value less than αcrit .
We continue until no new predictors can be added.

Stepwise Regression is a combination of backward elimination and forward se-
lection. This addresses the situation where variables are added or removed early in
the process and we want to change our mind about them later. At each stage a vari-
able may be added or removed and there are several variations on exactly how this is
done.

We illustrate backward elimination on some data on the 50 states from the 1970s.
The data were collected from U.S. Bureau of the Census. We will take life ex-
pectancy as the response and the remaining variables as predictors:

> data(state)

> statedata <- data.frame(state.x77,row.names=state.abb)

> lmod <- lm(Life.Exp ~ ., statedata)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.09e+01 1.75e+00 40.59 < 2e-16

Population 5.18e-05 2.92e-05 1.77 0.083

Income -2.18e-05 2.44e-04 -0.09 0.929

Illiteracy 3.38e-02 3.66e-01 0.09 0.927

Murder -3.01e-01 4.66e-02 -6.46 8.7e-08

HS.Grad 4.89e-02 2.33e-02 2.10 0.042

Frost -5.74e-03 3.14e-03 -1.82 0.075

Area -7.38e-08 1.67e-06 -0.04 0.965

n = 50, p = 8, Residual SE = 0.745, R-Squared = 0.74

The signs of some of the coefficients match plausible expectations concerning
how the predictors might affect the response. Higher murder rates decrease life ex-
pectancy as one might expect. Even so, some variables such as income, are not
significant, contrary to what one might expect.

At each stage we remove the predictor with the largest p-value over 0.05. Area
is the first to go:

> lmod <- update(lmod, . ~ . - Area)
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> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.09e+01 1.75e+00 40.59 < 2e-16

Population 5.18e-05 2.92e-05 1.77 0.083

Income -2.18e-05 2.44e-04 -0.09 0.929

Illiteracy 3.38e-02 3.66e-01 0.09 0.927

Murder -3.01e-01 4.66e-02 -6.46 8.7e-08

HS.Grad 4.89e-02 2.33e-02 2.10 0.042

Frost -5.74e-03 3.14e-03 -1.82 0.075

Area -7.38e-08 1.67e-06 -0.04 0.965

n = 50, p = 8, Residual SE = 0.745, R-Squared = 0.74

> lmod <- update(lmod, . ~ . - Illiteracy)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 71.0657509 1.0289415 69.07 < 2e-16

Population 0.0000511 0.0000271 1.89 0.066

Income -0.0000248 0.0002316 -0.11 0.915

Murder -0.3000077 0.0370418 -8.10 2.9e-10

HS.Grad 0.0477580 0.0185908 2.57 0.014

Frost -0.0059099 0.0024678 -2.39 0.021

n = 50, p = 6, Residual SE = 0.728, R-Squared = 0.74

> lmod <- update(lmod, . ~ . - Income)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 71.0271285 0.9528530 74.54 < 2e-16

Population 0.0000501 0.0000251 2.00 0.052

Murder -0.3001488 0.0366095 -8.20 1.8e-10

HS.Grad 0.0465822 0.0148271 3.14 0.003

Frost -0.0059433 0.0024209 -2.46 0.018

n = 50, p = 5, Residual SE = 0.720, R-Squared = 0.74

> lmod <- update(lmod, . ~ . - Population)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 71.03638 0.98326 72.25 <2e-16

Murder -0.28307 0.03673 -7.71 8e-10

HS.Grad 0.04995 0.01520 3.29 0.002

Frost -0.00691 0.00245 -2.82 0.007

n = 50, p = 4, Residual SE = 0.743, R-Squared = 0.71

The final removal of the Population variable is a close call. We may want to
consider including this variable if interpretation is made easier. Notice that the R2

for the full model of 0.736 is reduced only slightly to 0.713 in the final model. Thus
the removal of four predictors causes only a minor reduction in fit.

It is important to understand that the variables omitted from the model may still
be related to the response. For example:

> sumary(lm(Life.Exp ~ Illiteracy+Murder+Frost, statedata))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 74.55672 0.58425 127.61 <2e-16

Illiteracy -0.60176 0.29893 -2.01 0.0500

Murder -0.28005 0.04339 -6.45 6e-08

Frost -0.00869 0.00296 -2.94 0.0052
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n = 50, p = 4, Residual SE = 0.791, R-Squared = 0.67

We see that illiteracy does have some association with life expectancy. It is true
that replacing illiteracy with high school graduation rate gives us a somewhat better
fitting model, but it would be insufficient to conclude that illiteracy is not a variable
of interest. This demonstrates one failing of the method in that it cannot reliably
distinguish between important and unimportant predictors.

Testing-based procedures are relatively cheap computationally and easy to un-
derstand, but they do have some drawbacks:

1. Because of the “one-at-a-time” nature of adding/dropping variables, it is possible
to miss the “optimal” model.

2. The p-values used should not be treated too literally. There is so much multiple
testing occurring that the validity is dubious. The removal of less significant pre-
dictors tends to increase the significance of the remaining predictors. This effect
leads one to overstate the importance of the remaining predictors.

3. The procedures are not directly linked to final objectives of prediction or explana-
tion and so may not really help solve the problem of interest. With any variable
selection method, it is important to keep in mind that model selection cannot
be divorced from the underlying purpose of the investigation. Variable selection
tends to amplify the statistical significance of the variables that stay in the model.
Variables that are dropped can still be correlated with the response. It would be
wrong to say that these variables are unrelated to the response; it is just that they
provide no additional explanatory effect beyond those variables already included
in the model.

4. Stepwise variable selection tends to pick models that are smaller than desirable
for prediction purposes. To give a simple example, consider the simple regression
with just one predictor variable. Suppose that the slope for this predictor is not
quite statistically significant. We might not have enough evidence to say that it is
related to y but it still might be better to use it for predictive purposes.

Except in simple cases where only a few models are compared or in highly struc-
tured heirarchical models, testing-based variable selection should not be used. We
include it here because the method is still used but should be discouraged.

10.3 Criterion-Based Procedures

If we have some idea about the purpose for which a model is intended, we might
propose some measure of how well a given model meets that purpose. We could
choose that model among those possible that optimize that criterion.

It would be natural to pick a model g, parameterized by θ, that is close to the true
model f . We could measure the distance between g and f by

I( f ,g) =
∫

f (x) log

(
f (x)

g(x|θ)

)

dx
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This is known as the Kullback-Leibler information (or distance). It will be positive
except when g = f when it will be zero. Unfortunately, it is impractical for direct
implementation because we do not know f . We can substitute in the MLE of θ and
rearrange to obtain:

Î( f ,g) =
∫

f (x) log f (x)dx−
∫

f (x) logg(x|θ̂)dx

The first term is a constant that doesn’t depend on the model we choose g. Akaike
(1974) showed that EÎ( f ,g) can be estimated by

− logL(θ̂)+ p+constant

where p is the number of parameters in the model and the constant depends on the
unknown true model. For “historical” reasons, Akaike multiplied this by two to
obtain “an information criterion” (AIC):

AIC =−2L(θ̂)+2p

For linear regression models, the −2 max log-likelihood, −2L(θ̂) = n log(RSS/n)+
another constant. Since the constants are the same for a given data set and assumed
error distribution, they can be ignored for regression model comparisons on the same
data. Additional care is necessary for other types of comparisons. See Burnham and
Anderson (2002) for more detail.

We choose the model which minimizes the AIC. The first term in the AIC is
based on RSS which is made smaller by improving the fit. Adding more predictors,
provided they are not collinear, will achieve this but we are dissuaded from going too
far with this by the second term, called the penalty term, 2p. Hence, we see that AIC
naturally provides a balance between fit and simplicity in model selection.

Many other criteria have been proposed. Most well-known among the alterna-
tives is the Bayes information criterion (BIC) which is −2 max log-likelihood +
p logn. BIC penalizes larger models more heavily and so will tend to prefer smaller
models in comparison to AIC. AIC and BIC are often used as selection criteria for
other types of models too. There is some debate regarding the relative merits of these
two criteria although AIC is generally considered better when prediction is the aim.

We demonstrate the use of AIC on the state dataset. The leaps package ex-
haustively searches all possible combinations of the predictors. For each size of
model p, it finds the variables that produce the minumum RSS.

> require(leaps)

> b <- regsubsets(Life.Exp~.,data=statedata)

> rs <- summary(b)

> rs$which

(Intercept) Population Income Illiteracy Murder HS.Grad Frost Area

1 TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

2 TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE

3 TRUE FALSE FALSE FALSE TRUE TRUE TRUE FALSE

4 TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE

5 TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE

6 TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE

7 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
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Here we see that the best one predictor model uses Murder and so on. We compute
and plot the AIC:

> AIC <- 50*log(rs$rss/50) + (2:8)*2

> plot(AIC ~ I(1:7), ylab="AIC", xlab="Number of Predictors")
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Figure 10.1 AIC for models with varying numbers of predictors using the state
data.

We see in Figure 10.1 that the AIC is minimized by a choice of four predictors,
namely population, murder, high school graduation and frost as determined by the
logical matrix above.

Another commonly used criterion is adjusted R2, written R2
a. Recall that R2 =

1−RSS/T SS. Adding a variable to a model can only decrease the RSS and so only
increase the R2. Hence R2 by itself is not a good criterion, because it would always
choose the largest possible model:

R2
a = 1−

RSS/(n− p)

T SS/(n−1)
= 1−

(
n−1

n− p

)

(1−R2) = 1−
σ̂2

model

σ̂2
null

Adding a predictor will only increase R2
a if it has some predictive value. We can

see this because minimizing the standard error for prediction means minimizing σ̂2

which in term means maximizing R2
a.

Now let’s see which model the adjusted R2 criterion selects using the plot shown
in the first panel of Figure 10.2:
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> plot(2:8,rs$adjr2,xlab="No. of Parameters",ylab="Adjusted R-square")

> which.max(rs$adjr2)

[1] 4

We see that the population, frost, high school graduation and murder model has the
largest R2

a.
Our final criterion is Mallow’s Cp statistic. A good model should predict well, so

the average mean square error of prediction might be a good criterion:

1

σ2 ∑
i

E(ŷi −Eyi)
2

which can be estimated by the Cp statistic:

Cp =
RSSp

σ̂2
+2p−n

where σ̂2 is from the model with all predictors and RSSp indicates the RSS from a
model with p parameters. For the full model Cp = p exactly. If a p predictor model
fits, then E(RSSp) = (n− p)σ2 and then E(Cp)≈ p. A model with a bad fit will have
Cp much bigger than p. It is usual to plot Cp against p. We desire models with small
p and Cp around or less than p. Cp, R2

a and AIC all trade-off fit in terms of RSS
against complexity (p).

The Cp plot can be constructed as:

> plot(2:8,rs$cp,xlab="No. of Parameters",ylab="Cp Statistic")

> abline(0,1)

as seen in the second panel of Figure 10.2. The competition is between the four-
parameter, three-predictor, model including frost, high school graduation and murder
and the model also including population. Both models are on or below the Cp = p

line, indicating good fits. The choice is between the smaller model and the larger
model, which fits a little better. Some even larger models fit in the sense that they
are on or below the Cp = p line, but we would not opt for these in the presence of
smaller models that fit.

If there are q potential predictors, then there are 2q possible models. For larger
q, this might be too time consuming and we may need to economize by limiting the
search. In such cases, the step() function is a cheaper alternative. The function
does not evaluate the AIC for all possible models but uses a search method that com-
pares models sequentially. Thus it bears some comparison to the stepwise method
described above, but only in the method of search — there is no hypothesis testing.

> lmod <- lm(Life.Exp ~ ., data=statedata)

> step(lmod)

Start: AIC= -22.18

Life.Exp ~ Population + Income + Illiteracy + Murder +

HS.Grad + Frost + Area

Df Sum of Sq RSS AIC

- Area 1 0.0011 23.3 -24.2

- Income 1 0.0044 23.3 -24.2
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Figure 10.2 The adjusted R2 for the state data models is on the left and the Cp plot
for the same data at the right.

- Illiteracy 1 0.0047 23.3 -24.2

<none > 23.3 -22.2

- Population 1 1.7 25.0 -20.6

- Frost 1 1.8 25.1 -20.4

- HS.Grad 1 2.4 25.7 -19.2

- Murder 1 23.1 46.4 10.3

Step: AIC= -24.18

Life.Exp ~ Population + Income + Illiteracy + Murder +

HS.Grad + Frost

.. intermediate steps omitted ..

Step: AIC= -28.16

Life.Exp ~ Population + Murder + HS.Grad + Frost

Df Sum of Sq RSS AIC

<none > 23.3 -28.2

- Population 1 2.1 25.4 -25.9

- Frost 1 3.1 26.4 -23.9

- HS.Grad 1 5.1 28.4 -20.2

- Murder 1 34.8 58.1 15.5

Coefficients:

(Intercept) Population Murder HS.Grad Frost

71.0271285 0.0000501 -0.3001488 0.0465822 -0.0059433

The sequence of variable removal is the same as with backward elimination and the
model selected is the same as for AIC.

Variable selection methods are sensitive to outliers and influential points. Let’s
check for high leverage points:
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> h <- lm.influence(lmod)$hat

> names(h) <- state.abb

> rev(sort(h))

AK CA HI NV NM TX NY

0.809522 0.408857 0.378762 0.365246 0.324722 0.284164 0.256950

We can see that Alaska has high leverage. Let’s try excluding it:

> b<-regsubsets(Life.Exp~.,data=statedata, subset=(state.abb!="AK"))

> rs <- summary(b)

> rs$which[which.max(rs$adjr),]

(Intercept) Population Income Illiteracy Murder

TRUE TRUE FALSE FALSE TRUE

HS.Grad Frost Area

TRUE TRUE TRUE

We see that Area now makes it into the model. Transforming the predictors can
also have an effect. Take a look at the variables:

> stripchart(data.frame(scale(statedata)), method ="jitter", las=2,

vertical=TRUE)

Jittering adds a small amount of noise (in the horizontal direction in this example).
It is useful for moving apart points that would otherwise overprint each other.
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Figure 10.3 Strip charts of the state data; all variables have been standardized.

In Figure 10.3, we see that population and area are skewed — we try transforming
them:

> b<-regsubsets(Life.Exp ~ log(Population)+Income+Illiteracy+ Murder+

HS.Grad+Frost+log(Area),statedata)

> rs <- summary(b)

> rs$which[which.max(rs$adjr),]

(Intercept) log(Population) Income Illiteracy

TRUE TRUE FALSE FALSE
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Murder HS.Grad Frost log(Area)

TRUE TRUE TRUE FALSE

This changes the “best” model again to log(population), frost, high school grad-
uation and murder. The adjusted R2 of 71.7% is the highest among models we have
seen so far.

10.4 Summary

Variable selection is a means to an end and not an end itself. The aim is to construct a
model that predicts well or explains the relationships in the data. Automatic variable
selections are not guaranteed to be consistent with these goals. Use these methods as
a guide only.

Hypothesis testing-based methods use a restricted search through the space of
potential models and use a dubious method for choosing between models when re-
peated many times. Criterion-based methods typically involve a wider search and
compare models in a preferable manner. For this reason, we recommend that you use
a criterion-based method.

Accept the possibility that several models may be suggested which fit about as
well as each other. If this happens, consider:

1. Do the models have similar qualitative consequences?

2. Do they make similar predictions?

3. What is the cost of measuring the predictors?

4. Which has the best diagnostics?

If you find models that seem roughly comparable, but lead to quite different con-
clusions, then it is clear that the data cannot answer the question of interest un-
ambiguously. Be alert to the possibility that a model contradictory to the tentative
conclusions might be out there.

Exercises

1. Use the prostate data with lpsa as the response and the other variables as pre-
dictors. Implement the following variable selection methods to determine the
“best” model:

(a) Backward elimination

(b) AIC

(c) Adjusted R2

(d) Mallows Cp

2. Using the teengamb dataset with gamble as the response and the other variables
as predictors, repeat the work of the first question.

3. Using the divusa dataset with divorce as the response and the other variables as
predictors, repeat the work of the first question.
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4. Using the trees data, fit a model with log(Volume) as the response and a second-
order polynomial (including the interaction term) in Girth and Height. Deter-
mine whether the model may be reasonably simplified.

5. Fit a linear model to the stackloss data with stack.loss as the predictor and
the other variables as predictors. Simplify the model if possible. Check the model
for outliers and influential points. Now return to the full model, determine whether
there are any outliers or influential points, eliminate them and then repeat the
variable selection procedures.

6. Use the seatpos data with hipcenter as the response.

(a) Fit a model with all eight predictors. Comment on the effect of leg length on
the response.

(b) Compute a 95% prediction interval for the mean value of the predictors.

(c) Use AIC to select a model. Now interpret the effect of leg length and compute
the prediction interval. Compare the conclusions from the two models.

7. Generate some simulated data as described in Section 9.5.

(a) Fit regression splines with 12 evenly-spaced knots using y ~ bs(x, 12). You
will need to load the splines package. Display the fit on top of the data.

(b) Compute the AIC for this model.

(c) Compute the AIC for all models with a number of knots between 3 and 20
inclusive. Plot the AIC as function of the number of parameters. Which model
is best?

(d) Plot the fit for your selected model on top of the data.

8. Use the odor data with odor as the response.

(a) Fit a second-order response surface model which contains all quadratic and
cross-product terms of the three predictors. Explicitly include all nine terms in
your model statement. You will need to âĂIJprotectâĂİ these terms using the
I() function. Show the regression summary.

(b) Use the backward elimination method with a cut-off of 5% to select a smaller
model.

(c) Use the step method to select a model using AIC. Using this selected model
determine the optimal values of the predictors to minimize odor.

(d) Use the polym function to fit a second-order orthogonal polynomial regression
model to the response using the three predictors. Confirm that the fit is identical
to (a).

(e) Apply the step procedure to this last model. What terms are considered for
elimination? What model was selected? Compare the outcome with (c).



Chapter 11

Shrinkage Methods

Sometimes it can seem like you have too many predictors. If you use them all in your
regression model, problems can arise. Explanation can be difficult due to collinearity
as we saw in Section 7.3. Prediction performance can also be degraded by using too
many predictors. But more predictors should mean more information. That should
be helpful. In this chapter, we will look at four methods that allow us to shrink this
additional information into a more useful form. You will see later why we have used
the word “shrink”.

11.1 Principal Components

Principal components analysis (PCA) is a popular method for finding low-dimensional
linear structure in higher dimensional data. It has a range of purposes but let’s see
how it can be helpful in regression problems.

Designed experiments typically have predictors which are mutually orthogonal.
This makes the fitting and interpretation of these models simpler. For observational
data, predictors are often substantially correlated. It would be nice if we could trans-
form these predictors to orthogonality as it could make interpretation easier.

For example, consider the dimensions of the human body as measured in a study
on 252 men as described in Johnson (1996) as seen in Figure 11.1. We analyzed this
data in Section 4.2 where more details about motivation behind the data collection
can be found.

> data(fat,package="faraway")

> plot(neck ~ knee, fat)

> plot(chest ~ thigh, fat)

> plot(hip ~ wrist, fat)

We see that the body circumferences are strongly correlated. Although we may have
many predictors, there may be less information than the number of predictors might
suggest. PCA aims to discover this lower dimension of variability in higher dimen-
sional data.

Suppose we center the matrix of predictors X by subtracting the mean for each
variable so that the columns of X have mean zero. We use an X that does not include
a column of ones for an intercept term. We now find the orthogonal directions of
greatest variation in the data:

1. Find the u1 such that var (uT
1 X) is maximized subject to uT

1 u1 = 1.

2. Find u2 such that var (uT
2 X) is maximized subject to uT

1 u2 = 0 and uT
2 u2 = 1.
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Figure 11.1 Circumferences in centimeters for body dimensions of 252 men.

3. Keep finding directions of greatest variation orthogonal to those directions we
have already found.

For low dimensions, the process can be iterated until all dimensions have been ex-
hausted. For high dimensional problems, we can stop when the remaining variation
is negligible.

Let’s write zi = uT
i X . The zi are known as the principal components. We can

gather together the terms in the matrix form Z = XU where Z and U have columns
zi and ui respectively. U is called the rotation matrix. We can think of Z as a version
of the data rotated to orthogonality.

We consider only the circumference measurements in the fat dataset and com-
pute the principal components decomposition:

> cfat <- fat[,9:18]

> prfat <- prcomp(cfat)

> dim(prfat$rot)

[1] 10 10

> dim(prfat$x)

[1] 252 10

The $rot component is the rotation matrix U while the principal components are
found in the $x component which we have called Z. We can learn how effective the
PCA has been from the summary output:

> summary(prfat)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6

Standard deviation 15.990 4.06584 2.96596 2.00044 1.69408 1.49881

Proportion of Variance 0.867 0.05605 0.02983 0.01357 0.00973 0.00762

Cumulative Proportion 0.867 0.92304 0.95287 0.96644 0.97617 0.98378

PC7 PC8 PC9 PC10

Standard deviation 1.30322 1.25478 1.10955 0.52737

Proportion of Variance 0.00576 0.00534 0.00417 0.00094

Cumulative Proportion 0.98954 0.99488 0.99906 1.00000

The summary gives the standard deviations of the principal components uT
i X for

i = 1, . . . ,10. We also see that the first principal component explains 86.7% of the
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variation in the data while the last few components account for very little of the vari-
ation. Instead of ten variables, we could use just a single variable, formed by a linear
combination described by the first PC, which would represent the ten-dimensional
data quite well.

The first column of the rotation matrix, u1, is a linear combination describing the
first principal component:

> round(prfat$rot[,1],2)

neck chest abdom hip thigh knee ankle biceps

0.12 0.50 0.66 0.42 0.28 0.12 0.06 0.15

forearm wrist

0.07 0.04

We see that the chest, abdomen, hip and thigh measures dominate the first principal
component. However, the reason for this may simply be that these measures are
larger and so more variable than the wrist or ankle circumferences. We might prefer
to scale the variables for size by converting to standard units, that is, subtracting the
mean and dividing by the standard deviation. We can achieve this as follows:

> prfatc <- prcomp(cfat, scale=TRUE)

> summary(prfatc)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6

Standard deviation 2.6498 0.85301 0.81909 0.70114 0.54708 0.52831

Proportion of Variance 0.7021 0.07276 0.06709 0.04916 0.02993 0.02791

Cumulative Proportion 0.7021 0.77490 0.84199 0.89115 0.92108 0.94899

PC7 PC8 PC9 PC10

Standard deviation 0.45196 0.40539 0.27827 0.2530

Proportion of Variance 0.02043 0.01643 0.00774 0.0064

Cumulative Proportion 0.96942 0.98586 0.99360 1.0000

> round(prfatc$rot[,1],2)

neck chest abdom hip thigh knee ankle biceps

0.33 0.34 0.33 0.35 0.33 0.33 0.25 0.32

forearm wrist

0.27 0.30

We can see that, after scaling, the proportion of variablity explained by the first
component drops to 70.2%. The remaining variation is more evenly spread over
the other components. The first principal component has very similar coefficients
for all the variables. It is useful to interpret this as “overall size” since it is roughly
proportional to a mean across all these (standardized) variables. One interpretation
of this dominant first principal component is that body shapes in men are mostly
proportional. Bigger men tend to be just larger all-round versions of smaller men.

The other principal components describe how the data vary in ways orthogonal
to this first PC. For example, we might look at the second principal component:

> round(prfatc$rot[,2],2)

neck chest abdom hip thigh knee ankle biceps

0.00 -0.27 -0.40 -0.25 -0.19 0.02 0.62 0.02

forearm wrist

0.36 0.38

which is roughly a contrast between the body center measures of chest, abdomen,
hip and thigh circumferences against the extremities of forearm, wrist and ankle
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measures. This could be viewed as a relative measure of where the body is carrying
its weight. This represents only 7.3% of the total variation so it is not substantial but
is the largest component of variation after the first PC.

Like variances, principal components analysis can be very sensitive to outliers so
it is essential to check for these. In addition to the usual graphical checks of the data,
it is worth checking for outliers in higher dimensions. Such outliers can be hard to
find. For example, consider someone with a weight of 50 kg and a height of 2 m.
Neither value is individually exceptional but the combination would be very unlikely
and possibly an error. Mahalanobis distance is a measure of the distance of a point
from the mean that adjusts for the correlation in the data. . It is defined as

di =
√

(x−µ)T Σ−1(x−µ)

where µ is a measure of center and Σ is a measure of covariance. Since we are con-
cerned about outliers, it is sensible to use robust measures of center and covariance
— these are provided by the cov.rob() function from the MASS package.

> require(MASS)

> robfat <- cov.rob(cfat)

> md <- mahalanobis(cfat, center=robfat$center, cov=robfat$cov)

> n <- nrow(cfat);p <- ncol(cfat)

> plot(qchisq(1:n/(n+1),p), sort(md), xlab=expression(paste(chi^2,"

quantiles")), ylab="Sorted Mahalanobis distances")

> abline(0,1)

The mahalanobis function returns d2
i . If the data are multivariate normal with di-

mension m, then we expect d2 to follow a χ2
m distribution. We can check this graphi-

cally with a Q–Q plot as seen in Figure 11.2. We see that there are some outliers and
that we can investigate the sensitivity of the PCA to these values by re-analyzing the
data after removing these points. If you do this, you will find that it makes a substan-
tive difference, especially to the second PC. An alternative to this outlier detection
approach is to use robust PCA methods.

So far we have not tried to link the predictors to the response in a regression
model. Indeed, PCA is widely used in other applications — see Joliffe (2002) for a
book length treatment. Now let’s see how we can use PCA for regression. We might
have a model y ~ X. We replace this by y ~ Z where typically we use only the first
few columns of Z. This is known as principal components regression or PCR. The
technique is used in two distinct ways for explanation and prediction purposes.

When the goal of the regression is to find simple, well-fitting and understandable
models for the response, PCR may help. The PCs are linear combinations of the
predictors. For example, the purpose in collecting the body fat data was to model
the percentage of body fat described by the response, brozek. We analyzed this data
before in Section 4.2 but we are using fewer predictors here. Here is the model output
where we use all ten circumference predictors:

> lmoda <- lm(fat$brozek ~ ., data=cfat)

> sumary(lmoda)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.22875 6.21431 1.16 0.24588

neck -0.58195 0.20858 -2.79 0.00569
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Figure 11.2 Q–Q plot of the Mahalanobis distances for the body circumference
data.

chest -0.09085 0.08543 -1.06 0.28866

abdom 0.96023 0.07158 13.41 < 2e-16

hip -0.39135 0.11269 -3.47 0.00061

thigh 0.13371 0.12492 1.07 0.28554

knee -0.09406 0.21239 -0.44 0.65828

ankle 0.00422 0.20318 0.02 0.98344

biceps 0.11120 0.15912 0.70 0.48533

forearm 0.34454 0.18551 1.86 0.06450

wrist -1.35347 0.47141 -2.87 0.00445

n = 252, p = 11, Residual SE = 4.071, R-Squared = 0.74

It is difficult to say much about which factors might influence body fat percentage
because there are clear indications of collinearity. The signs of the coefficients and
their significance vary in a less than credible way. Why would abdomen circum-
ference have a positive effect while hip circumference has negative effect? Now
consider the output where we use only the first two principal components:

> lmodpcr <- lm(fat$brozek ~ prfatc$x[,1:2])

> sumary(lmodpcr)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.938 0.329 57.54 <2e-16

prfatc$x[, 1:2]PC1 1.842 0.124 14.80 <2e-16

prfatc$x[, 1:2]PC2 -3.551 0.387 -9.18 <2e-16

n = 252, p = 3, Residual SE = 5.225, R-Squared = 0.55

We have lost some explanatory power in going from ten down to two predictors.
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But these two predictors are now orthogonal, meaning we can now interpret these
without collinearity worries. As previously discussed, the first PC can be viewed
as a measure of overall size. We can see this is associated with higher body fat.
The second PC shows a negative association, meaning that men who carry relatively
more of their substance in their extremities tend to be leaner. These would tend to
be men who are more muscular so this result accords with what one might expect.
So the PCR here has allowed us a meaningful explanation whereas the full predictor
regression was opaque.

One objection to the previous analysis is that the two PCs still use all ten pre-
dictors so there has been no saving in the number of variables needed to model the
response. Furthermore, we must rely on our subjective interpretation of the meaning
of the PCs. To answer this, one idea is to take a few representive predictors based on
the largest coefficients seen in the PCs. For example, we might pick out the abdomen
circumference to represent the first PC and the difference between abdomen and an-
kle circumference for the second PC. The latter pair show the largest coefficients in
absolute value (−0.40 and 0.62) for the second PC. Abdomen does not quite have
the largest coefficient in the first PC (hip does) but it’s a close choice and means we
need only two predictors in the following model. We need to scale the predictors so
that ankle and abdomen are on the standard units scale.

> lmodr <- lm(fat$brozek ~ scale(abdom) + I(scale(ankle)-scale(abdom))

, data=cfat)

> sumary(lmodr)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.938 0.279 67.79 <2e-16

scale(abdom) 5.763 0.328 17.55 <2e-16

I(scale(ankle) - scale(abdom)) -0.995 0.314 -3.17 0.0017

n = 252, p = 3, Residual SE = 4.435, R-Squared = 0.68

We have a simple model that fits almost as well as the ten-predictor model. We can
interpret it similarly to the previous model but it is easier to explain to others. Future
studies might be done more cheaply because we might only need these two measures.

However, for this explanatory use of PCR to work, we typically need the predic-
tors to measure quantities for which linear combinations are interpretable — usually
the predictors would need to have the same units. So if we had used the age and
weight variables found in the fat data example, it would have been far more diffi-
cult to interpret the linear combinations. Even in the homogenous predictor case, we
need some luck and imagination to get interpretable PCs. These requirements restrict
the utility of PCR for explanatory purposes. It is worth trying but you might not get
anything useful from it.

We can sometimes make better predictions with a small number of principal com-
ponents in Z than a much larger number of variables in X . Success requires that we
make a good choice of the number of components. To illustrate the use of PCR and
the other shrinkage methods in this chapter, we will use a set of data where the em-
phasis is on prediction but the explanatory aspects of the methods can be useful in
gaining intuition about the structure of the data. A Tecator Infratec Food and Feed
Analyzer working in the wavelength range of 850 to 1050 nm by the near-infrared
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transmission (NIT) principle was used to collect data on samples of finely chopped
pure meat and 215 samples were measured. For each sample, the fat content was
measured along with a 100-channel spectrum of absorbances. Since determining
the fat content via analytical chemistry is time consuming, we would like to build a
model to predict the fat content of new samples using the 100 absorbances which can
be measured more easily. See Thodberg (1993) for more details.

The true performance of any model is hard to determine based on just the fit to
the available data. We need to see how well the model does on new data not used
in the construction of the model. For this reason, we will partition the data into two
parts — a training sample consisting of the first 172 observations that we will use to
build and estimate the models and a testing sample of the remaining 43 observations.

Let’s start with the least squares fit:

> data(meatspec, package="faraway")

> trainmeat <- meatspec[1:172,]

> testmeat <- meatspec[173:215,]

> modlm <- lm(fat ~ ., trainmeat)

> summary(modlm)$r.squared

[1] 0.99702

We see that the fit of this model is already very good in terms of R2. How well does
this model do in predicting the observations in the test sample? We need a measure
of performance — we use root mean square error (RMSE):

√

(
n

∑
i=1

(ŷi − yi)
2/n)

where n = 43 in this instance. We find for the training sample that:

> rmse <- function(x,y) sqrt(mean((x-y)^2))

> rmse(fitted(modlm), trainmeat$fat)

[1] 0.69032

while for the test sample:

> rmse(predict(modlm,testmeat), testmeat$fat)

[1] 3.814

We see that the performance is much worse for the test sample. This is not unusual,
as the fit to the data we have almost always gives an over-optimistic sense of how
well the model will do with future data. In this case, the actual error is about five
times greater than the model itself suggests.

Now, it is quite likely that not all 100 predictors are necessary to make a good
prediction. In fact, some of them might just be adding noise to the prediction and
we could improve matters by eliminating some of them. We use the default stepwise
model selection:

> modsteplm <- step(modlm)

> rmse(modsteplm$fit, trainmeat$fat)

[1] 0.7095

> rmse(predict(modsteplm,testmeat), testmeat$fat)

[1] 3.5902



168 SHRINKAGE METHODS

The model selection step removed 28 variables. Of course, the nominal fit got a little
worse as it always will when predictors are removed, but the actual performance
improved somewhat from 3.81 to 3.59.

Now let’s compute the PCA on the training sample predictors:

> meatpca <- prcomp(trainmeat[,-101])

We can examine the standard deviations of the principal components:

> round(meatpca$sdev,3)

[1] 5.055 0.511 0.282 0.168 0.038 0.025 0.014 0.011 0.005 0.003

....

[91] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

We see that the first PC accounts for about ten times more variation than the second.
The contribution drops off sharply. This suggests that most of the variation in the
predictors can be explained with just a few dimensions.

The linear combinations ui (or loadings) can be found in the rotation matrix
meatpca$rotation. We plot these vectors against the predictor number (which
represents the range of frequencies in this case) in Figure 11.3 using:

> matplot(1:100, meatpca$rot[,1:3], type="l", xlab="Frequency", ylab

="", col=1)
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Figure 11.3 Eigenvectors for the PCA of the meat spectrometer data. The solid line
corresponds to the first PC, the dotted line is for the second PC and the dashed line
is for the third PC.

These vectors represent the linear combinations of the predictors that generate the
PCs. We see that the first PC comes from an almost constant combination of the
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frequencies. It measures whether the predictors are generally large or small. The
second PC represents a contrast between the higher and lower frequencies. The third
is more difficult to interpret. It is sometimes possible, as in this example, to give some
meaning to the PCs. This is typically a matter of intuitive interpretation. Sometimes,
no interpretation can be found and we must be satisfied with possibility of improved
prediction.

We can do the PCR with output from prcomp() but the pls package contains
several features which makes the computation more straightforward. We start by
fitting a PCR considering up to 50 components:

> require(pls)

> pcrmod <- pcr(fat ~ ., data=trainmeat, ncomp=50)

Let’s use the first four PCs to predict the response:

> rmse(predict(pcrmod, ncomp=4), trainmeat$fat)

[1] 4.0647

We do not expect as good a fit using only four variables instead of the 100. Even so,
considering that, the fit is not much worse than the results from much bigger models.

PCR is an example of shrinkage estimation. Let’s see where the name comes
from. We plot the 100 slope coefficients for the full least squares fit:

> plot(modlm$coef[-1],xlab="Frequency",ylab="Coefficient",type="l")

which is shown in the left panel of Figure 11.4. We see that the coefficients’ range
is in the thousands and that the adjacent coefficients can be very different. This is
perhaps surprising because one might expect that adjacent frequencies might have a
very similar effect on the response. We plot the coefficients from the four-component
fit in the panel on the right of Figure 11.4.

> coefplot(pcrmod, ncomp=4, xlab="Frequency",main="")

Here we see that the range of these coefficients is much smaller than the thousands
seen for the ordinary least squares fit. Instead of wildly varying coefficients in the
least squares case, we have a more stable result. This is why the effect is known
as shrinkage. Furthermore, there is smoothness between adjacent frequencies as
knowledge of the science behind this data might suggest.

Why use four PCs here and not some other number? The standard advice for
choosing the number of PCs to represent the variation in X is to choose the number
beyond which all the PC standard deviations are relatively small. A good way to
determine this number is to make a scree plot, which simply makes an index plot of
the standard deviations. We show here the square roots of the eigenvalues and only
the first ten values to focus on the area of interest; see Figure 11.5:

> plot(meatpca$sdev[1:10],type="l",ylab="SD of PC", xlab="PC number")

We could make a case for using only the first PC, but there is another identifiable
“elbow” at five indicating the choice of four PCs. Now let’s see how well the test
sample is predicted:

> rmse(predict(pcrmod, testmeat, ncomp=4), testmeat$fat)

[1] 4.534
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Figure 11.4 Coefficients for the least squares fit on the left and for the PCR with
four components on the right.
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Figure 11.5 Scree plot of the standard deviations of the first ten principal compo-
nents.



PRINCIPAL COMPONENTS 171

which is not at all impressive. It turns out that we can do better by using more PCs
— we figure out how many would give the best result on the test sample:

> pcrmse <- RMSEP(pcrmod, newdata=testmeat)

> plot(pcrmse,main="")

> which.min(pcrmse$val)

[1] 28

> pcrmse$val[28]

[1] 1.8549
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Figure 11.6 RMS for the test sample on the left and RMS estimated using CV for
varying numbers of PCs on the right.

The plot of the RMSE is seen in Figure 11.6. The best result occurs for 28 PCs for
which the RMSE is far better than anything achieved thus far. Of course, in practice
we would not have access to the test sample in advance and so we would not know
to use 28 components. We could, of course, reserve part of our original dataset for
testing. This is sometimes called a validation sample. This is a reasonable strategy,
but the downside is that we lose this sample from our estimation which degrades
its quality. Furthermore, there is the question of which and how many observations
should go into the validation sample. We can avoid this dilemma with the use of
crossvalidation (CV). We divide the data into m parts, equal or close in size. For
each part, we use the rest of the data as the training set and that part as the test set.
We evaluate the criterion of interest, RMSE in this case. We repeat for each part and
average the result.

The pcr() function can compute this CV. By default, the data is randomly di-
vided into ten parts for the CV. The random division means that the outcome is not
deterministic. We have set the random number generator seed using set.seed()

(and the choice of 123 is arbitrary) so that you will get the same result as here. You
do not need to set the seed unless you want the results to be completely reproducible.

> set.seed(123)
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> pcrmod <- pcr(fat ~ ., data=trainmeat, validation="CV", ncomp=50)

> pcrCV <- RMSEP(pcrmod, estimate="CV")

> plot(pcrCV,main="")

> which.min(pcrCV$val)

[1] 18

> ypred <- predict(pcrmod, testmeat, ncomp=18)

> rmse(ypred, testmeat$fat)

[1] 2.1271

The crossvalidated estimates of the RMSE are shown in the right panel of Fig-
ure 11.6. The minimum occurs at 18 components. This gives an RMSE on the
test sample, 2.13, which is close to the optimum.

11.2 Partial Least Squares

Partial least squares (PLS) is a method for relating a set of input variables X1, . . . ,Xm

and outputs Y1, . . . ,Yl . PLS regression is comparable to PCR in that both predict the
response using some number of linear combinations of the predictors. The difference
is that while PCR ignores Y in determining the linear combinations, PLS regression
explicitly chooses them to predict Y as well as possible.

We will consider only univariate PLS, i.e., l = 1 so that Y is scalar. We will look
for models of the form:

ŷ = β1T1 + · · ·+βkTk

where the Ti’s are mutually orthogonal linear combinations of the Xs. See Figure 11.7

X1

X2

Xp

T1

Tk

Y

Figure 11.7 Schematic representation of partial least squares.

Various algorithms have been presented for computing PLS. Most work by itera-
tively determining the Tis to predict y well, but at the same time maintaining orthog-
onality. One criticism of PLS is that it solves no well-defined modeling problem,
which makes it difficult to distinguish between the competing algorithms on theoret-
ical rather than empirical grounds. Garthwaite (1994) presents an intuitive algorithm,
but de Jong (1993) describes the SIMPLS method, which is among the best known.
Several other algorithms exist.

As with PCR, we must choose the number of components carefully. CV can be
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helpful in doing this. We apply PLS to the meat spectroscopy data using CV to select
the number of components. We compute the PLS on all models up to size 50. We
have set the random generator seed to ensure reproducibility in light of the random
division of the validation samples. We plot the linear combination used for a four-
component model in the left panel of Figure 11.8. The crossvalidated estimates of
the RMSE are shown in the right panel.

> set.seed(123)

> plsmod <- plsr(fat ~ ., data=meatspec[1:172,], ncomp=50, validation

="CV")

> coefplot(plsmod, ncomp=4, xlab="Frequency")

> plsCV <- RMSEP(plsmod, estimate="CV")

> plot(plsCV,main="")
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Figure 11.8 Coefficients of X for a four-component PLS model are shown on the
left. Estimated CV error is shown on the right.

We see that the effective linear combination of the predictors in the four-component
model is similar to the PCR indicating the shrinkage effect. As before, four compo-
nents do not appear to be enough — we need around 15 components as suggested
by the crossvalidated estimate of the RMSE. We need fewer components than PCR,
which is expected since we are using information about the response.

Now we determine the performance on the training set for the 15-component
model:

> ypred <- predict(plsmod,ncomp=15)

> rmse(ypred, trainmeat$fat)

[1] 1.8898

which is similar to PCR, but now see how we do on the test set:

> ytpred <- predict(plsmod, testmeat, ncomp=15)

> rmse(ytpred, testmeat$fat)

[1] 1.9718
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which is slightly better than the 2.13 achieved by PCR.
We have not checked any diagnostics in this analysis. PLS and PCR are just as

sensitive to assumptions as OLS so these are still mandatory in any full analysis.
PCR and PLS are particularly attractive methods when there are large numbers

of predictors, p, relative to the sample size, n. They can still work even when p > n.
This is not uncommon in some applications such as bioinformatics where data may
give information on a large number of genes for a small sample of individuals.

PLS tends to have an advantage over PCR for prediction problems because PLS
constructs its linear combination explicitly to predict the response. On the other
hand, PCR is better suited for developing insights by forming linear combinations
that have interesting interpretations.

Although both methods use the idea of dimension reduction, there is usually
no reduction in the number of variables used since every predictor contributes to
the linear combinations. If you are hoping to save the cost of measuring predictors
in order to build a cheaper but still effective prediction model, the criterion-based
variable selection as described in Chapter 10 or the lasso method described later in
this chapter will be more useful.

11.3 Ridge Regression

Ridge regression makes the assumption that the regression coefficients (after nor-
malization) should not be very large. This is a reasonable assumption in applications
where you have a large number of predictors and you believe that many of them have
some effect on the response. Hence shrinkage is embedded in the method. Ridge
regression is particularly effective when the model matrix is collinear and the usual
least squares estimates of β appear to be unstable.

Suppose that the predictors have been centered by their means and scaled by their
standard deviations and that the response has been centered. The ridge regression
estimate chooses the β that minimizes:

(y−Xβ)T (y−Xβ)+λ∑
j

β2
j

for some choice of λ≥ 0. The penalty term is ∑ j β2
j . We want to keep this term small.

Ridge regression is an example of a penalized regression because of the presence of
this term. The ridge regression estimates of βs are given by:

β̂ = (XT X +λI)−1XT y

The λI introduces a “ridge” down the XT X matrix, hence the name of the method.
An equivalent expression of the problem is that we choose β to minimize:

(y−Xβ)T (y−Xβ) subject to
p

∑
j=1

β2
j ≤ t2

We find the least squares solution subject to an upper bound on the size of the coeffi-
cients. The use of ridge regression can also be justified from a Bayesian perspective
where a prior distribution on the parameters puts more weight on smaller values.
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The nature of the ridge solution is seen in the first panel of Figure 11.9. The OLS
fit that minimizes the residual sum of squares (RSS) is achieved at β̂LS. We can draw
confidence ellipses around the least squares solution β̂LS of increasing size. Points on
these ellipses represent solutions for β which are progressively less desirable in terms
of fit. We grow the ellipses until they intersect with a circle of radius t centered at
the origin. This point of interesection will satisfy ∑

p
j=1 β2

j = t2 and be the best fitting

solution subject to this requirement. Of course, if β̂LS is already inside the circle, the
ridge and OLS solutions are identical but usually t is small enough that this rarely
occurs.

β1

β2

t

t

β̂LS

β1

β2

t

t

β̂LS

Figure 11.9 Ridge and lasso regression are illustrated. On the left, confidence el-
lipses of increasing level are plotted around the least squares estimate. The largest
ellipse intersects the circle of radius t at the ridge estimate. On the right, the largest
ellipse intersects the square at the lasso estimate.

λ (or t) may be chosen by automatic methods, but it is also sensible to plot the
values of β̂ as a function of λ. You should pick the smallest value of λ that produces
stable estimates of β.

We demonstrate the method on the meat spectroscopy data; λ = 0 corresponds to
least squares while we find that as λ → ∞: β̂ → 0. The response, training and test
datasets need to be mean-centered.

> require(MASS)

> rgmod <- lm.ridge(fat ~ ., trainmeat, lambda = seq(0, 5e-8, len=21))

> matplot(rgmod$lambda, coef(rgmod), type="l", xlab=expression(lambda)

,ylab=expression(hat(beta)),col=1)

Some experimentation was necessary to determine the appropriate range of λ. The
ridge trace plot is shown in Figure 11.10. We can select the value of λ using gener-
alized crossvalidation (GCV) which is similar to CV but is easier to compute.

> which.min(rgmod$GCV)

1.75e-08
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Figure 11.10 Ridge trace plot for the meat spectroscopy data. The generalized
crossvalidation choice of λ is shown as a vertical line.

8

> abline(v=1.75e-08)

We will use the generalized crossvalidation (GCV) estimate of 1.75e−8. First, we
compute the training sample performance. This ridge regression both centers and
scales the predictors, so we need to do the same in computing the fit. Furthermore,
we need to add back in the mean of the response because of the centering:

> ypred <- cbind(1,as.matrix(trainmeat[,-101])) %*% coef(rgmod)[8,]

> rmse(ypred, trainmeat$fat)

[1] 0.80244

which is comparable to the above, but for the test sample we find:

> ypred <- cbind(1,as.matrix(testmeat[,-101])) %*% coef(rgmod)[8,]

> rmse(ypred, testmeat$fat)

[1] 4.1011

which is dismayingly poor. However, a closer examination of the predictions reveals
that just one of the ridge predictions is bad:

> c(ytpred[13],ypred[13],testmeat$fat[13])

[1] 35.690 11.164 34.800

The PLS prediction (first) is close to the truth (third), but the ridge prediction is bad.
If we remove this case:

> rmse(ypred[-13], testmeat$fat[-13])

[1] 1.9795

we get a good result. Of course, one poor prediction can ruin your reputation so PLS
did better here in coping with the outlier.
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Ridge regression estimates of coefficients are biased. Bias is undesirable, but it
is not the only consideration. The mean-squared error (MSE) can be decomposed in
the following way:

E(β̂−β)2 = (E(β̂−β))2 +E(β̂−Eβ̂)2

Thus the MSE of an estimate can be represented as the square of the bias plus the
variance. Sometimes a large reduction in the variance may be obtained at the price of
an increase in the bias. If the MSE is substantially reduced as a consequence, then we
may be willing to accept some bias. This is the trade-off that ridge regression makes
— a reduction in variance at the price of an increase in bias. This is a common
dilemma.

Frank and Friedman (1993) compared PCR, PLS and ridge regression and found
the best results for ridge regression. Of course, for any given dataset any of the
methods may prove to be the best, so picking a winner is difficult.

11.4 Lasso

The lasso method is apparently very similar to the ridge regression method. We
choose β̂ to minimize:

(y−Xβ)T (y−Xβ) subject to
p

∑
j=1

|β j|≤ t

where the penalty term differs in form from the ridge case. This method was intro-
duced by Tibshirani (1996). There is no explicit solution to this problem as in the
ridge regression case although it can be found quite efficiently as described within
the context of a more general method called least angle regression as given in Efron,
Hastie, Johnstone, and Tibshirani (2004). The name, lasso, is not an acronym. It
refers to the rope used by cowboys to pull cattle from the herd just as the statistician
selects variables from the full model.

The important difference between lasso and ridge regression is in the nature of
the solutions which is illustrated in Figure 11.9. For the lasso, the L1 constraint of

∑
p
j=1 |β j| ≤ t defines a square in two dimensions as seen in the figure. In higher

dimensions, it defines a polytope with vertices on the coordinates’ axes and edges
where some number of the coordinate values will be zero. In the figure, we can see
that the expanding ellipses touch the square at a vertex. We can see that, depending
on the value of β̂LS, the correlation of variables which determines the orientation of
the ellipse and the value of t, that a solution on a vertex will occur frequently. In
higher dimensions, the solution will also commonly lie on an edge or vertex of the
polytope. As t increases, more variables are added to the model and their coefficients
become larger. For large enough t, the restriction of ∑

p
j=1 |β j| ≤ t is redundant and

the least squares solution is returned.
For the lasso, for moderate values of t, many β̂ j tend to be zero. The use of

lasso is most appropriate when we believe the effects are sparse — that the response
can be explained by a small number of predictors with the rest having no effect. This
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means that lasso can be regarded as a type of variable selection method because when
β̂ j = 0, the corresponding predictor x j is effectively eliminated from the regression.

In contrast, ridge regression does not eliminate any variables; it only makes the β̂ j

smaller.
The lars package can be used to compute lasso solutions. We demonstrate its

application to the state data from the variable selection chapter:

> require(lars)

> data(state)

> statedata <- data.frame(state.x77,row.names=state.abb)

> lmod <- lars(as.matrix(statedata[,-4]),statedata$Life)

The lars function requires the matrix of predictors as its first argument and does not
accept a formula argument. As before, we use the other variables to predict the life
expectancy. The results can be plotted, as seen in the first panel of Figure 11.11:

> plot(lmod)
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Figure 11.11 Lasso plots for the state data. The coefficients as a function of t are
shown in the first panel. The crossvalidated selection of t is shown in the second
panel. t has been scaled by the least squares solution.

The horizontal axis for t has been scaled by the maximum possible value for ∑
p
j=1 |β j|

given by the least squares solution. For the smallest value of t, only predictor #4, the
murder rate, is active. As t increases, a second predictor, the high school graduation
rate enters. The population and days of frost enter later. The remaining three vari-
ables do not enter the model until t is very close to the least squares solution. As t

increases, we see the size of the estimated coefficients also increase.
The choice of t can be made using crossvalidation. The default method for lars

uses a 10-fold method where the data are randomly divided into 10 groups. Nine
groups are used to predict the one group for each group in turn and the overall pre-
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diction performance is computed. The CV criterion along with a standard error es-
timated can be computed. As in previous examples where the 10-fold division is
randomly selected, we set the random number generator seed to ensure reproducibil-
ity.

> set.seed(123)

> cvlmod <- cv.lars(as.matrix(statedata[,-4]),statedata$Life)

The plot is shown in the second panel of Figure 11.11. We see that a (fractional) value
for t of around 0.65 is recommended. Referring to the first panel of Figure 11.11,
we see this leads to a model containing four predictors. The minimizing fraction and
corresponding coefficients may be obtained as:

> cvlmod$index[which.min(cvlmod$cv)]

[1] 0.65657

> predict(lmod,s=0.65657,type="coef",mode="fraction")$coef

Population Income Illiteracy Murder HS.Grad

0.000023453 0.000000000 0.000000000 -0.239879419 0.035288870

Frost Area

-0.001694991 0.000000000

We see the same variables are selected as in the previous analyses. However, the
coefficients are shrunk somewhat from the corresponding least squares solution:

> coef(lm(Life.Exp ~ Population+Murder+HS.Grad+Frost, statedata))

(Intercept) Population Murder HS.Grad Frost

71.02712853 0.00005014 -0.30014880 0.04658225 -0.00594329

Lasso is most useful for problems with much larger numbers of variables such as
the ongoing spectroscopy example of this chapter. We compute the lasso fit for the
training data:

> trainy <- trainmeat$fat

> trainx <- as.matrix(trainmeat[,-101])

> lassomod <- lars(trainx,trainy)

We now compute the crossvalidation choice of t:

> set.seed(123)

> cvout <- cv.lars(trainx,trainy)

> cvout$index[which.min(cvout$cv)]

[1] 0.010101

For this choice of t, we compute the predicted values for the test data:

> testx <- as.matrix(testmeat[,-101])

> predlars <- predict(lassomod,testx,s=0.0101,mode="fraction")

The RMSE may now be computed:

> rmse(testmeat$fat, predlars$fit)

[1] 2.1323

We obtain the best result of all the methods tried so far.
It is interesting to compute the coefficients of the selected fit and examine them,

as seen in Figure 11.12:
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> predlars <- predict(lassomod, s=0.0101, type="coef", mode="fraction

")

> plot(predlars$coef,type="h",ylab="Coefficient")

> sum(predlars$coef != 0)

[1] 20
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Figure 11.12 Coefficients of the CV-selected lasso fit to the spectroscopy data.

We see that only 20 frequencies are used in predicting the response. The competing
methods in this chapter used every frequency except for the stepwise method which
still used most of the frequencies.

For this example, there is probably no additional cost in measuring all the fre-
quencies as opposed to just a few of them. However, in other applications, where
there is some cost in recording additional predictors, the lasso method would be es-
pecially valuable. The lasso is particularly useful when we believe the effects are
sparse, i.e., that few of the predictors have an effect. For example, this arises in the
analysis of gene expression data where we have good reason to believe that only a
small number of genes have an influence on the quantity of interest. Lasso is also
useful in that it still works when the number of predictors p exceeds the number of
observations. The use of lasso in applications where effects are not sparse, as in
many socioeconomic examples, is less compelling.

Exercises

1. Using the seatpos data, perform a PCR analysis with hipcenter as the response
and HtShoes, Ht, Seated, Arm, Thigh and Leg as predictors. Select an
appropriate number of components and give an interpretation to those you choose.
Add Age and Weight as predictors and repeat the analysis. Use both models to
predict the response for predictors taking these values:

Age Weight HtShoes Ht Seated
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64.800 263.700 181.080 178.560 91.440

Arm Thigh Leg

35.640 40.950 38.790

2. Fit a PLS model to the seatpos data with hipcenter as the response and all other
variables as predictors. Take care to select an appropriate number of components.
Use the model to predict the response at the values of the predictors specified in
the first question.

3. Fit a ridge regression model to the seatpos data with hipcenter as the response
and all other variables as predictors. Take care to select an appropriate amount of
shrinkage. Use the model to predict the response at the values of the predictors
specified in the first question.

4. Take the fat data, and use the percentage of body fat, siri, as the response and
the other variables, except brozek and density as potential predictors. Remove
every tenth observation from the data for use as a test sample. Use the remaining
data as a training sample building the following models:

(a) Linear regression with all predictors

(b) Linear regression with variables selected using AIC

(c) Principal component regression

(d) Partial least squares

(e) Ridge regression

Use the models you find to predict the response in the test sample. Make a report
on the performances of the models.

5. Some near infrared spectra on 60 samples of gasoline and corresponding oc-
tane numbers can be found by data(gasoline, package="pls"). Compute
the mean value for each frequency and predict the response for the best model
using the five different methods from Question 4.

6. The dataset kanga contains data on the skulls of historical kangaroo specimens.

(a) Compute a PCA on the 18 skull measurements. You will need to exclude
observations with missing values. What percentage of variation is explained
by the first principal component?

(b) Provide the loadings for the first principal component. What variables are
prominent?

(c) Repeat the PCA but with the variables all scaled to the same standard deviation.
How do the percentage of variation explained and the first principal component
differ from those found in the previous PCA?

(d) Give an interpretation of the second principal component.

(e) Compute the Mahalanobis distances and plot appropriately to check for out-
liers.

(f) Make a scatterplot of the first and second principal components using a differ-
ent plotting symbol depending on the sex of the specimen. Do you think these
two components would be effective in determining the sex of a skull?



Chapter 12

Insurance Redlining — A Complete Example

In this chapter, we present a relatively complete data analysis. The example is inter-
esting because it illustrates several of the ambiguities and difficulties encountered in
statistical practice.

Insurance redlining refers to the practice of refusing to issue insurance to certain
types of people or within some geographic area. The name comes from the act of
drawing a red line around an area on a map. Now few would quibble with an in-
surance company refusing to sell auto insurance to a frequent drunk driver, but other
forms of discrimination would be unacceptable.

In the late 1970s, the US Commission on Civil Rights examined charges by sev-
eral Chicago community organizations that insurance companies were redlining their
neighborhoods. Because comprehensive information about individuals being refused
homeowners insurance was not available, the number of FAIR plan policies written
and renewed in Chicago by zip code for the months of December 1977 through May
1978 was recorded. The FAIR plan was offered by the city of Chicago as a default
policy to homeowners who had been rejected by the voluntary market. Information
on other variables that might affect insurance writing such as fire and theft rates was
also collected at the zip code level. The variables are:

race racial composition in percentage of minority

fire fires per 100 housing units

theft thefts per 1000 population

age percentage of housing units built before 1939

involact new FAIR plan policies and renewals per 100 housing units

income median family income in thousands of dollars

side north or south side of Chicago

The data come from Andrews and Herzberg (1985) where more details of the
variables and the background are provided.

12.1 Ecological Correlation

Notice that we do not know the races of those denied insurance. We only know the
racial composition in the corresponding zip code. This is an important difficulty that
needs to be considered before starting the analysis.

When data are collected at the group level, we may observe a correlation between
two variables. The ecological fallacy is concluding that the same correlation holds

183
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at the individual level. For example, in countries with higher fat intakes in the diet,
higher rates of breast cancer have been observed. Does this imply that individuals
with high fat intakes are at a higher risk of breast cancer? Not necessarily. Rela-
tionships seen in observational data are subject to confounding, but even if this is
allowed for, bias is caused by aggregating data. We consider an example taken from
US demographic data:

> data(eco, package="faraway")

> plot(income ~ usborn, data=eco, xlab="Proportion US born", ylab="

Mean Annual Income")

In the first panel of Figure 12.1, we see the relationship between 1998 per capita
income dollars from all sources and the proportion of legal state residents born in the
United States in 1990 for each of the 50 states plus the District of Columbia (D.C.).
We can see a clear negative correlation. We can fit a regression line and show the
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Figure 12.1 1998 annual per capita income and proportion US born for 50 states
plus D.C. The plot on the right shows the same data as on the left, but with an
extended scale and the least squares fit shown.

fitted line on an extended range:

> lmod <- lm(income ~ usborn, eco)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 68642 8739 7.85 3.2e-10

usborn -46019 9279 -4.96 8.9e-06

n = 51, p = 2, Residual SE = 3489.541, R-Squared = 0.33

> plot(income ~ usborn, data=eco, xlab="Proportion US born", ylab="

Mean Annual Income",xlim=c(0,1),ylim=c(15000,70000),xaxs="i")

> abline(coef(lmod))

We see that there is a clear statistically significant relationship between the per capita
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annual income and the proportion who are US born. What does this say about the
average annual income of people who are US born and those who are naturalized
citizens? If we substitute usborn=1 into the regression equation, we get 68642−
46019 = $22,623, while if we put usborn=0, we get $68,642. This suggests that on
average, naturalized citizens earn three times more than US born citizens. In truth,
information from the US Bureau of the Census indicates that US born citizens have
an average income just slightly larger than naturalized citizens. What went wrong
with our analysis?

The ecological inference from the aggregate data to the individuals requires an
assumption of constancy. Explicitly, the assumption would be that the incomes of
the native born do not depend on the proportion of native born within the state (and
similarly for naturalized citizens). This assumption is unreasonable for these data
because immigrants are naturally attracted to wealthier states.

This assumption is also relevant to the analysis of the Chicago insurance data
since we have only aggregate data. We must keep in mind that the results for the
aggregated data may not hold true at the individual level.

12.2 Initial Data Analysis

Start by reading the data in and examining it:

> data(chredlin, package="faraway")

> head(chredlin)

race fire theft age involact income side

60626 10.0 6.2 29 60.4 0.0 11.744 n

60640 22.2 9.5 44 76.5 0.1 9.323 n

60613 19.6 10.5 36 73.5 1.2 9.948 n

60657 17.3 7.7 37 66.9 0.5 10.656 n

60614 24.5 8.6 53 81.4 0.7 9.730 n

60610 54.0 34.1 68 52.6 0.3 8.231 n

Summarize:

> summary(chredlin)

race fire theft age

Min. : 1.00 Min. : 2.00 Min. : 3.0 Min. : 2.0

1st Qu.: 3.75 1st Qu.: 5.65 1st Qu.: 22.0 1st Qu.:48.6

Median :24.50 Median :10.40 Median : 29.0 Median :65.0

Mean :34.99 Mean :12.28 Mean : 32.4 Mean :60.3

3rd Qu.:57.65 3rd Qu.:16.05 3rd Qu.: 38.0 3rd Qu.:77.3

Max. :99.70 Max. :39.70 Max. :147.0 Max. :90.1

involact income side

Min. :0.000 Min. : 5.58 n:25

1st Qu.:0.000 1st Qu.: 8.45 s:22

Median :0.400 Median :10.69

Mean :0.615 Mean :10.70

3rd Qu.:0.900 3rd Qu.:11.99

Max. :2.200 Max. :21.48

We see that there is a wide range in the race variable, with some zip codes almost
entirely minority or non-minority. This is good for our analysis since it will reduce
the variation in the regression coefficient for race, allowing us to assess this effect
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more accurately. If all the zip codes were homogeneous, we would never be able to
discover an effect from these aggregated data. We also note some skewness in the
theft and income variables. The response involact has a large number of zeros.
This is not good for the assumptions of the linear model but we have little choice but
to proceed. We will not use the information about north versus south side until later.
Now make some graphical summaries:

> require(ggplot2)

> ggplot(chredlin,aes(race,involact)) + geom_point() +stat_smooth(

method="lm")

> ggplot(chredlin,aes(fire,involact)) + geom_point() +stat_smooth(

method="lm")

> ggplot(chredlin,aes(theft,involact)) + geom_point() +stat_smooth(

method="lm")

> ggplot(chredlin,aes(age,involact)) + geom_point() +stat_smooth(

method="lm")

> ggplot(chredlin,aes(income,involact)) + geom_point() +stat_smooth(

method="lm")

> ggplot(chredlin,aes(side,involact)) + geom_point(position = position

_jitter(width = .2,height=0))

The plots are seen in Figure 12.2. We have superimposed a linear fit to each pair
of variables with a 95% confidence band shown in grey. Strong relationships can be
seen in several of the plots. We can see some outlier and influential points. We can
also see that the fitted line sometimes goes below zero which is problematic since
observed values of the response cannot be negative. Jittering has been added in the
final plot to avoid overplotting of symbols. Let’s focus on the relationship between
involact and race:

> sumary(lm(involact ~ race,chredlin))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.12922 0.09661 1.34 0.19

race 0.01388 0.00203 6.84 1.8e-08

n = 47, p = 2, Residual SE = 0.449, R-Squared = 0.51

We can clearly see that homeowners in zip codes with a high percentage of mi-
norities are taking the default FAIR plan insurance at a higher rate than other zip
codes. That is not in doubt. However, can the insurance companies claim that the
discrepancy is due to greater risks in some zip codes? The insurance companies
could claim that they were denying insurance in neighborhoods where they had sus-
tained large fire-related losses and any discriminatory effect was a by-product of
legitimate business practice. We plot some of the variables involved by this question
in Figure 12.3.

> ggplot(chredlin,aes(race,fire)) + geom_point() +stat_smooth(method="

lm")

> ggplot(chredlin,aes(race,theft)) + geom_point() +stat_smooth(method

="lm")

We can see that there is indeed a relationship between the fire rate and the percentage
of minorities. We also see that there is large outlier that may have a disproportionate
effect on the relationship between the theft rate and the percentage of minorities.
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Figure 12.2 Plots of the Chicago insurance data.
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Figure 12.3 Relationship between fire, theft and race in the Chicago data.
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The question of which variables should also be included in the regression so
that their effect may be adjusted for is difficult. Statistically, we can do it, but the
important question is whether it should be done at all. For example, it is known that
the incomes of women in the United States and other countries are generally lower
than those of men. However, if one adjusts for various predictors such as type of job
and length of service, this gender difference is reduced or can even disappear. The
controversy is not statistical but political — should these predictors be used to make
the adjustment?

For the present data, suppose that the effect of adjusting for income differences
was to remove the race effect. This would pose an interesting, but non-statistical
question. I have chosen to include the income variable in the analysis just to see
what happens.

I have decided to use log(income) partly because of skewness in this variable,
but also because income is better considered on a multiplicative rather than additive
scale. In other words, $1,000 is worth a lot more to a poor person than a millionaire
because $1,000 is a much greater fraction of the poor person’s wealth.

12.3 Full Model and Diagnostics

We start with the full model:

> lmod <- lm(involact ~ race + fire + theft + age + log(income),

chredlin)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.18554 1.10025 -1.08 0.28755

race 0.00950 0.00249 3.82 0.00045

fire 0.03986 0.00877 4.55 0.000048

theft -0.01029 0.00282 -3.65 0.00073

age 0.00834 0.00274 3.04 0.00413

log(income) 0.34576 0.40012 0.86 0.39254

n = 47, p = 6, Residual SE = 0.335, R-Squared = 0.75

Before leaping to any conclusions, we should check the model assumptions. These
two diagnostic plots are seen in Figure 12.4:

> plot(lmod,1:2)

The diagonal streak in the residual-fitted plot is caused by the large number of zero
response values in the data. When y = 0, the residual ε̂ = −ŷ = −xT β̂, hence the
line. Turning a blind eye to this feature, we see no particular problem. The Q–Q plot
looks fine too. This is reassuring since we know from the form of the response with
so many zero values, that it cannot possibly be normally distributed. We’ll rely on
the central limit theorem, the size of the sample and lack of long-tailed or skewed
residuals to be comfortable with the reported p-values.

We now look for transformations. We try some partial residual plots as seen in
Figure 12.5:

> termplot(lmod, partial.resid=TRUE, terms=1:2)
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Figure 12.4 Diagnostic plots of the initial model for the Chicago insurance data.
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These plots indicate no need to transform. It would have been inconvenient to trans-
form the race variable since that would have made interpretation more difficult.
Fortunately, we do not need to worry about this. We examined the other partial resid-
ual plots and experimented with polynomials for the predictors. No transformation
of the predictors appears to be worthwhile.

We choose to avoid a transformation of the response. The zeros in the response
would have restricted the possibilities and furthermore would have made interpre-
tation more difficult. A square root transformation is possible but whatever slim
advantage this might offer, it makes explanation more problematic.

12.4 Sensitivity Analysis

How robust is our conclusion to the choice of covariates used to adjust the response?
In the full model used earlier, we used all four covariates but we may wonder how
sensitive our findings are to this choice. Certainly, one might question whether we
should adjust the response for the average income of the zip code. Other objections
or uncertainties might be raised by use of the other covariates also.

We can investigate these concerns by fitting other models that vary the choice
of adjusting covariates. In this example, there are four such covariates and so there
are only 16 possible combinations in which they may be added to the model. It is
practical to fit and examine all these models.

The mechanism for creating all 16 models is rather complex and you may wish
to skip to the output. The first line creates all subsets of (1,2,3,4). The second
line creates the predictor part of the model formulae by pasting together the chosen
variables. We then iterate over all 16 models, saving the terms of interest for the
race variable:

> listcombo <- unlist(sapply(0:4,function(x) combn(4, x, simplify=

FALSE)),recursive=FALSE)

> predterms <- lapply(listcombo, function(x) paste(c("race",c("fire","

theft","age","log(income)")[x]),collapse="+"))

> coefm <- matrix(NA,16,2)

> for(i in 1:16){

lmi <- lm(as.formula(paste("involact ~ ",predterms[[i]])), data=

chredlin)

coefm[i,] <- summary(lmi)$coef[2,c(1,4)]

}

> rownames(coefm) <- predterms

> colnames(coefm) <- c("beta","pvalue")

> round(coefm,4)

beta pvalue

race 0.0139 0.0000

race+fire 0.0089 0.0002

race+theft 0.0141 0.0000

race+age 0.0123 0.0000

race+log(income) 0.0082 0.0087

race+fire+theft 0.0082 0.0002

race+fire+age 0.0089 0.0001

race+fire+log(income) 0.0070 0.0160

race+theft+age 0.0128 0.0000

race+theft+log(income) 0.0084 0.0083
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race+age+log(income) 0.0099 0.0017

race+fire+theft+age 0.0081 0.0001

race+fire+theft+log(income) 0.0073 0.0078

race+fire+age+log(income) 0.0085 0.0041

race+theft+age+log(income) 0.0106 0.0010

race+fire+theft+age+log(income) 0.0095 0.0004

The output shows the β̂1 and the associated p-values for all 16 models. We can
see see that the value of β̂1 varies somewhat with a high value about double the low
value. But in no case does the p-value rise above 5%. So although we may have some
uncertainty over the magnitude of the effect, we can be sure that the significance of
the effect is not sensitive to the choice of adjusters.

Suppose the outcome had not been so clear cut and we were able to find models
where the predictor of interest (in this case, race) was not statistically significant.
The investigation would then have become more complex because we would need to
consider more deeply which covariates should be adjusted for and which not. Such
a discussion is beyond the scope of this book, but illustrates why causal inference is
a difficult subject.

We should also be concerned whether our conclusions are sensitive to the inclu-
sion or exclusion of a small number of cases. Influence diagnostics are useful for
this purpose. We start with a plot of the differences in the coefficient caused by the
removal of one point. These can be seen for the race variable in Figure 12.6.

> diags <- data.frame(lm.influence(lmod)$coef)

> ggplot(diags,aes(row.names(diags),race)) +geom_linerange(aes(ymax=0,

ymin=race)) +theme(axis.text.x=element_text(angle=90)) + xlab("

ZIP") +geom_hline(yint=0)

The ggplot function requires the data in the form of a data frame. We extract the
relevant component from the the lm.influence call for this purpose. We can see
that the largest reduction is about 0.001 which would be insufficient to change the
statistical significance of this term.
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Figure 12.6 Leave-out-one change in coefficient values for β̂race.

It is also worth considering the influence on the adjustment covariates We plot
the leave-out-one differences in β̂ for theft and fire:
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> ggplot(diags,aes(x=fire,y=theft))+geom_text(label=row.names(diags))

Let’s also take a look the standardized residuals and leverage which can be conve-
niently constructed using the default plot function for a linear model object:

> plot(lmod,5)
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Figure 12.7 Plot of the leave-out one coefficient differences is shown on the left.
Plot of the standardized residuals against the leverages is shown on the right

See Figure 12.7 where zip codes 60607 and 60610 stick out. It is worth looking at
other leave-out-one coefficient plots also. We also notice that there is no standardized
residual extreme enough to call an outlier. Let’s take a look at the two cases:

> chredlin[c("60607","60610"),]

race fire theft age involact income side

60607 50.2 39.7 147 83.0 0.9 7.459 n

60610 54.0 34.1 68 52.6 0.3 8.231 n

These are high theft and fire zip codes. See what happens when we exclude these
points:

> match(c("60607", "60610"),row.names(chredlin))

[1] 24 6

> lmode <- lm(involact ~ race + fire + theft + age + log(income),

chredlin,subset=-c(6,24))

> sumary(lmode)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.57674 1.08005 -0.53 0.596

race 0.00705 0.00270 2.62 0.013

fire 0.04965 0.00857 5.79 1e-06

theft -0.00643 0.00435 -1.48 0.147

age 0.00517 0.00289 1.79 0.082

log(income) 0.11570 0.40111 0.29 0.775

n = 45, p = 6, Residual SE = 0.303, R-Squared = 0.8
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The predictors theft and age are no longer significant at the 5% level. The co-
efficient for race is reduced compared to the full data fit but remains statistically
significant.

So we have verified that our conclusions are also robust to the exclusion of one
or perhaps two cases from the data. This is reassuring since a conclusion based on
the accuracy of measurement for a single case would be a cause for concern. If this
problem did occur, we would need to be particularly sure of these measurements. In
some situations, one might wish to drop such influential cases but this would require
strong arguments that such points were in some way exceptional. In any case, it
would be very important to disclose this choice in the analysis.

Now if we try very hard to poke a hole in our result, we can find this model where
two cases have been dropped:

> modalt <- lm(involact ~ race+fire+log(income),chredlin, subset=-c

(6,24))

> sumary(modalt)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.75326 0.83588 0.90 0.373

race 0.00421 0.00228 1.85 0.072

fire 0.05102 0.00845 6.04 3.8e-07

log(income) -0.36238 0.31916 -1.14 0.263

n = 45, p = 4, Residual SE = 0.309, R-Squared = 0.79

In this model, race no longer meets the threshold for significance. However, there
is no compelling reason to advocate for this model against the large weight of other
alternatives we have considered.

This illustrates a wider problem with regression modeling in that the data usu-
ally do not unequivocally suggest one particular model. It is easy for independent
analysts to apply similar methods but in different orders and in somewhat different
ways resulting in different model choices. See Faraway (1994) for some examples.
For this reason, the good analyst explores the data thoroughly and considers multiple
models. One might settle on one final model but confidence in the conclusions will
be enhanced if it can be shown that competing models result in similar conclusions.
Our analysis in this chapter demonstrates this concern for alternatives but there is an
unavoidable reliance on human judgement. An unscrupulous analyst can explore a
large number of models but report only the one that favors a particular conclusion.

A related concept is model uncertainty. We surely do not know the true model
for this data and somehow our conclusions should reflect this. The regresssion sum-
mary outputs provide standard errors and p-values that express our uncertainty about
the parameters of the model but they do not reflect the uncertainty about the model
itself. This means that we will tend to be more confident about our inferences than
is justified. There are several possible ways to mitigate this problem. One simple
approach is data splitting as used in the running example on the meatspec data in
Chapter 11. Another idea is to bootstrap the whole data analysis as demonstrated
by Faraway (1992). Alternatively, it may be possible to use model averaging as in
Raftery, Madigan, and Hoeting (1997).
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12.5 Discussion

There is some ambiguity in the conclusion here. These reservations have several
sources. There is some doubt because the response is not a perfect measure of peo-
ple being denied insurance. It is an aggregate measure that raises the problem of
ecological correlations. We have implicitly assumed that the probability a minority
homeowner would obtain a FAIR plan after adjusting for the effect of the other co-
variates is constant across zip codes. This is unlikely to be true. If the truth is simply
a variation about some constant, then our conclusions will still be reasonable, but if
this probability varies in a systematic way, then our conclusions may be off the mark.
It would be a very good idea to obtain some individual level data.

We have demonstrated statistical significance for the effect of race on the re-
sponse. But statistical significance is not the same as practical significance. The
largest value of the response is only 2.2% and most other values are much smaller.
Using our preferred models, the predicted difference between 0% minority and 100%
minority is about 1%. So while we may be confident that some people are affected,
there may not be so many of them. We would need to know more about predictors
like insurance renewal rates to say much more but the general point is that the size of
the p-value does not tell you much about the practical size of the effect.

There is also the problem of a potential latent variable that might be the true cause
of the observed relationship. Someone with first-hand knowledge of the insurance
business might propose one. This possibility always casts a shadow of doubt on our
conclusions.

Another issue that arises in cases of this nature is how much the data should be
aggregated. For example, suppose we fit separate models to the two halves of the
city. Fit the model to the south of Chicago:

> lmod <- lm(involact ~ race+fire+theft+age, subset=(side == "s"),

chredlin)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.23441 0.23774 -0.99 0.338

race 0.00595 0.00328 1.81 0.087

fire 0.04839 0.01689 2.87 0.011

theft -0.00664 0.00844 -0.79 0.442

age 0.00501 0.00505 0.99 0.335

n = 22, p = 5, Residual SE = 0.351, R-Squared = 0.74

and now to the north:

> lmod <- lm(involact ~ race+fire+theft+age, subset=(side == "n"),

chredlin)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.31857 0.22702 -1.40 0.176

race 0.01256 0.00448 2.81 0.011

fire 0.02313 0.01398 1.65 0.114

theft -0.00758 0.00366 -2.07 0.052

age 0.00820 0.00346 2.37 0.028

n = 25, p = 5, Residual SE = 0.343, R-Squared = 0.76
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We see that race is significant in the north, but not in the south. By dividing the
data into smaller and smaller subsets it is possible to dilute the significance of any
predictor. On the other hand, it is important not to aggregate all data without regard
to whether it is reasonable. Clearly a judgment has to be made and this can be a point
of contention in legal cases.

There are some special difficulties in presenting this during a court case. With
scientific inquiries, there is always room for uncertainty and subtlety in presenting
the results, particularly if the subject matter is not contentious. In an adversarial
proceeding, it is difficult to present statistical evidence when the outcome is not clear-
cut, as in this example. There are particular difficulties in explaining such evidence
to non-mathematically trained people.

After all this analysis, the reader may be feeling somewhat dissatisfied. It seems
we are unable to come to any truly definite conclusions and everything we say has
been hedged with “ifs” and “buts.” Winston Churchill once said:

Indeed, it has been said that democracy is the worst form of Government except
all those other forms that have been tried from time to time.

We might say the same about statistics with respect to how it helps us reason in the
face of uncertainty. It is not entirely satisfying but the alternatives are worse.

Exercises

In all the following questions, a full answer requires you to perform a complete
analysis of the data including an initial data anaysis, regression diagnostics, a search
for possible transformations and a consideration of model selection. A report on your
analysis needs to be selective in its content. You should include enough information
for the steps leading to your selection of model to be clear and reproducible by the
reader. But you should not include everything you tried. Dead ends can be reported
in passing but do not need to be described in full detail unless they contain some
message of interest. Above all your analysis should have a clear statement of the
conclusion of your analysis.

1. Reliable records of temperature taken using thermometers are only available back
to the 1850s, but it would be interesting to estimate global temperatures in the
pre-industrial era. It is possible to obtain various proxy measures of temperature.
Trees grow faster in warmer years so the width of tree rings (seen in tree cross-
sections) provides some evidence of past temperatures. Other natural sources of
proxies include coral and ice cores. Such information can go back for a thou-
sand years or more. The dataset globwarm contains information on eight proxy
measures and northern hemisphere temperatures back to 1856. Build a model and
predict temperatures back to 1000 AD. State the uncertainty in your predictions.
Comment on your findings. (Note: that this data has been modified and simplified
for the purposes of this exercise — see the R help page for the data to find out
about the source).

2. The happy dataset contains data from 39 MBA students on predictors affecting
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happiness. Analyze the data to provide an interpretation for the relationship be-
tween happiness and money, sex, love and work.

3. The mammalsleep dataset contains data on 62 mammals. Focus your interest on
the effect of predation on sleep, making proper adjustments for the effects of other
predictors.



Chapter 13

Missing Data

13.1 Types of Missing Data

Here are some of the ways that missing data can arise in a regression setting:

Missing cases Sometimes we fail to observe a complete case (xi,yi). Indeed, when
we draw a sample from a population, we do not observe the unsampled cases.
When missing data arise in this manner, there is no difficulty since this is the
standard situation for much of statistics. But sometimes there are cases we in-
tended to sample but failed to observe. If the reason for this failure is unrelated to
what would have been observed, then we simply have a smaller sample and can
proceed as normal. But when data are not observed for reasons that have some
connection to what we would have seen, then we have a biased sample. Some-
times, given enough information about the mechanism for missingness, we can
make corrections and achieve valid inferences.

Incomplete values Suppose we run an experiment to study the lifetimes of light
bulbs. We might run out of time waiting for all the lightbulbs to die and decide to
end the experiment. These incomplete cases would provide the information that a
bulb lasted at least some amount of time but we would not know how long it would
have lasted had we waited until it died. Similar examples arise in medical trials
where patient final outcomes are not known. Such cases are said to be censored.
Methods like survival analysis or reliability analysis can handle such data.

Missing values Sometimes we observe some components of a case but not others.
We might observe the values of some predictors but not others. Perhaps the pre-
dictors are observed but not the response.

In this chapter, we address the missing value problem. Biased sampling due to miss-
ing cases can sometimes be mitigated by covariate adjustment while methods for
analyzing censored data may be found in other books.

What can be done? Finding the missing values is the best option, but this may not
be possible because the values were never recorded or were lost in the data collection
process. Next, ask why the data are missing. We can distinguish several kinds of
missingness:

Missing Completely at Random (MCAR) The probability that a value is missing
is the same for all cases. If we simply delete all cases with missing values from
the analysis, we will cause no bias, although we may lose some information.

Missing at Random (MAR) The probability of a value being missing depends on a
known mechanism. For example, in social surveys, certain groups are less likely
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to provide information than others. As long as we know the group membership
of the individual being sampled, then this is an example of MAR. We can delete
these missing cases provided we adjust for the group membership by including
this as a factor in the regression model. We will see later how we may do better
than simply deleting such cases.

Missing not at Random (MNAR) The probability that a value is missing depends
on some unobserved variable or, more seriously, on what value would have been
observed. For example, people who have something to hide are typically less
likely to provide information that might reveal something embarassing or illegal.

Dealing with the MNAR case is difficult or even impossible so we confine our atten-
tion to MAR problems.

Determining the type of missingness for data usually requires judgement alone.
There are no obvious diagnostic methods to check since the data we need for such
checks are missing.

13.2 Deletion

Suppose some of the values in the Chicago insurance dataset were missing. I ran-
domly declared some of the observations missing in this modified dataset:

> data(chmiss, package="faraway")

> chmiss

race fire theft age involact income

60626 10.0 6.2 29 60.4 NA 11.744

60640 22.2 9.5 44 76.5 0.1 9.323

60613 19.6 10.5 36 NA 1.2 9.948

60657 17.3 7.7 37 NA 0.5 10.656

--- etc ---

60645 3.1 4.9 27 NA 0.0 13.731

Sometimes, we are warned that there are missing values and we should always be
alert to this possiblity in our initial data analysis. For a small dataset, simply looking
at the data reveals the problem. For larger datasets, the standard summary reports on
missing values:

> summary(chmiss)

race fire theft age

Min. : 1.00 Min. : 2.0 Min. : 3.0 Min. : 2.0

1st Qu.: 3.75 1st Qu.: 5.6 1st Qu.: 22.0 1st Qu.:48.3

Median :24.50 Median : 9.5 Median : 29.0 Median :64.4

Mean :35.61 Mean :11.4 Mean : 32.7 Mean :60.0

3rd Qu.:57.65 3rd Qu.:15.1 3rd Qu.: 38.0 3rd Qu.:78.2

Max. :99.70 Max. :36.2 Max. :147.0 Max. :90.1

NA’s :4 NA’s :2 NA’s :4 NA’s :5

involact income

Min. :0.000 Min. : 5.58

1st Qu.:0.000 1st Qu.: 8.56

Median :0.500 Median :10.69

Mean :0.648 Mean :10.74

3rd Qu.:0.925 3rd Qu.:12.10

Max. :2.200 Max. :21.48

NA’s :3 NA’s :2
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We can see missing values in all variables. It is also helpful to see how many missing
values appear in each case.

> rowSums(is.na(chmiss))

60626 60640 60613 60657 60614 60610 60611 60625 60618 60647 60622

1 0 1 1 0 0 0 0 1 1 0

60631 60646 60656 60630 60634 60641 60635 60639 60651 60644 60624

0 1 0 0 1 0 0 0 1 1 0

60612 60607 60623 60608 60616 60632 60609 60653 60615 60638 60629

0 1 0 1 1 0 1 0 0 0 1

60636 60621 60637 60652 60620 60619 60649 60617 60655 60643 60628

0 1 0 0 1 0 1 1 0 0 1

60627 60633 60645

0 0 1

We see there is at most one missing value in each row. We can also plot the miss-
ing value information as seen in Figure 13.1. In this example, the missing cases are
evenly scattered throughout the data. In some cases, the missing values are concen-
trated in some variables or cases. This can make it easier to drop variables from
the analysis or delete cases without losing much information. But in this example,
deleting the missing cases will lose 20 out of 47 observations.

> image(is.na(chmiss),axes=FALSE,col=gray(1:0))

> axis(2, at=0:5/5, labels=colnames(chmiss))

> axis(1, at=0:46/46, labels=row.names(chmiss),las=2)
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Figure 13.1 Missing values in the simulated Chicago insurance data.

Let’s see what happens when we use a deletion strategy. First consider the full data
fit for comparison purposes:

> data(chredlin, package="faraway")

> modfull <- lm(involact ~ ., chredlin)

> sumary(modfull)

Estimate Std. Error t value Pr(>|t|)
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(Intercept) -4.86e-01 6.02e-01 -0.81 0.42411

race 8.53e-03 2.86e-03 2.98 0.00491

fire 3.78e-02 8.98e-03 4.21 0.00014

theft -1.02e-02 2.91e-03 -3.49 0.00118

age 7.62e-03 3.33e-03 2.29 0.02758

volact -1.02e-02 2.77e-02 -0.37 0.71552

income 2.57e-05 3.22e-05 0.80 0.42976

n = 47, p = 7, Residual SE = 0.339, R-Squared = 0.75

Of course, we would not be able to see such output in practice. Now compare this to
a fit to the missing version of the data:

> modmiss <- lm(involact ~ ., chmiss)

> sumary(modmiss)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.11648 0.60576 -1.84 0.07947

race 0.01049 0.00313 3.35 0.00302

fire 0.04388 0.01032 4.25 0.00036

theft -0.01722 0.00590 -2.92 0.00822

age 0.00938 0.00349 2.68 0.01390

income 0.06870 0.04216 1.63 0.11808

n = 27, p = 6, Residual SE = 0.338, R-Squared = 0.79

The default behavior of the lm function is to omit any case with missing values. We
are left with only 27 complete cases for the regression. We can see that the standard
errors are larger for the missing version because we have less data to fit the model
and so the estimates are less precise.

Deleting missing cases is the simplest strategy for dealing with missing data.
It avoids the complexity and possible biases introduced by the more sophisticated
methods that we will discuss. The drawback is that we are throwing away infor-
mation that might allow more precise inference. A decision on whether deletion is
an acceptable missing data strategy depends on the circumstances. If relatively few
cases contain missing values, if deleting missing cases still leaves a large dataset or
if you wish to communicate a simple data analysis method, the deletion strategy is
satisfactory.

13.3 Single Imputation

A simple solution to the problem is to fill in or impute the missing values. For
example, we can fill in the missing values by the variable means:

> (cmeans <- colMeans(chmiss,na.rm=TRUE))

race fire theft age involact income

35.60930 11.42444 32.65116 59.96905 0.64773 10.73587

> mchm <- chmiss

> for(i in c(1:4,6)) mchm[is.na(chmiss[,i]),i] <- cmeans[i]

We do not fill in missing values in the response because this is the variable we are
trying to model. The cases with a missing response still have some value in imputing
the other missing predictor values. Now refit:
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> imod <- lm(involact ~ ., mchm)

> sumary(imod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.07080 0.50945 0.14 0.890

race 0.00712 0.00271 2.63 0.012

fire 0.02874 0.00939 3.06 0.004

theft -0.00306 0.00275 -1.11 0.272

age 0.00608 0.00321 1.90 0.066

income -0.02709 0.03168 -0.86 0.398

n = 44, p = 6, Residual SE = 0.384, R-Squared = 0.68

There are some important differences between these two fits. For example, theft
and age are significant in the first fit, but not in the second. Also, the regression
coefficients are now all closer to zero. The situation is analogous to the errors in
variables case. The bias introduced by the fill-in method can be substantial and may
not be compensated by the attendant reduction in variance. For this reason, mean
imputation is not recommended except where the fraction of filled values is small.

Missing values may also arise for categorical variables. We can impute with the
most common level or category of the variable. Alternatively, a missing value can
simply be regarded as an additional level of the variable so, for example, we might
have male, female and unknown levels.

A more sophisticated alternative to mean imputation is to use regression methods
to predict the missing values of the covariates. Let’s try to fill in the missing race
values:

> lmodr <- lm(race ~ fire+theft+age+income,chmiss)

> chmiss[is.na(chmiss$race),]

race fire theft age involact income

60646 NA 5.7 11 27.9 0.0 16.250

60651 NA 15.1 30 89.8 0.8 10.510

60616 NA 12.2 46 48.0 0.6 8.212

60617 NA 10.8 34 58.0 0.9 11.156

> predict(lmodr,chmiss[is.na(chmiss$race),])

60646 60651 60616 60617

-17.847 26.360 70.394 32.620

Notice that the first prediction is negative. One trick that can be applied when the
response is bounded between zero and one is the logit transformation:

y → log(y/(1− y))

This transformation maps the interval to the whole real line. The logit function and
its inverse are defined in the faraway package. We now fit the model with a logit-
transformed response and then back transform the predicted values, remembering to
convert our percentages to proportions and vice versa at the appropriate times:

> lmodr <- lm(logit(race/100) ~ fire+theft+age+income,chmiss)

> ilogit(predict(lmodr,chmiss[is.na(chmiss$race),]))*100

60646 60651 60616 60617

0.41909 14.73202 84.26540 21.31213

We can see how our predicted values compare to the actual values:
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> chredlin$race[is.na(chmiss$race)]

[1] 1.0 13.4 62.3 36.4

So our first two predictions are good, but the other two are somewhat wide of the
mark. We still need to impute the missing values for the other predictors which will
take us some manual effort.

Like the mean fill-in method, the regression fill-in method will also introduce a
bias toward zero in the coefficients while tending to reduce the variance. The success
of the regression method depends somewhat on the collinearity of the predictors —
the filled-in values will be more accurate the more collinear the predictors are. How-
ever, for collinear data one might consider deleting a predictor riddled with missing
values rather than imputing because other variables that are strongly correlated will
bear the predictive load.

13.4 Multiple Imputation

The single imputation methods described above cause bias while deletion causes a
loss of information from the data. Multiple imputation is a way to reduce the bias
caused by single imputation. The problem with single imputation is that the imputed
value, be it a mean or a regression-predicted value, tends to be less variable than
the value we would have seen because the imputed value does not include the error
variation that would normally be seen in observed data. The idea behind multiple
imputation is to reinclude that error variation — we add back on the error to the
imputed value. Of course, if we only did this once, the outcome would be an inferior
single imputation method so we repeat the imputation multiple times.

Multiple imputation is implemented in the Amelia package of Honaker, King,
and Blackwell (2011). There are various methods of performing the imputation, de-
pending on the variable type. A basic assumption is that the data is multivariate
normal. The methodology is quite robust to this assumption but we need to make
modifications in some cases. Heavily skewed variables are best log-transformed be-
fore imputation and categorical variables need to be declared for special treatment.
These issues do not apply for the insurance data. It is not thought necessary to repeat
the imputation many times — we have used 25 in this instance:

> require(Amelia)

> set.seed(123)

> chimp <- amelia(chmiss, m=25)

You will notice that we have included the whole data frame in the imputation even
though this includes the income variable that we shall not be using. This variable may
contain information that may be helpful in predicting missing values in the variables
we do include. Furthermore, inclusion makes the MAR assumption more tenable. It
is also important that the imputation model used for imputing the values be at least
as rich as the model we fit to the data.

We can now fit the linear model to each of the 25 imputed datasets and store the
results about β̂ and se(β̂).

> betas <- NULL
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> ses <- NULL

> for(i in 1:chimp$m){

lmod <- lm(involact ~ race+fire+theft+age, chimp$imputations[[i]])

betas <- rbind(betas ,coef(lmod))

ses <- rbind(ses,coef(summary(lmod))[,2])

}

We can combine the results to get estimates of the coefficients and their standard
errors. Let β̂i j and si j be the estimates and standard errors for the ith imputed result

for i = 1, . . . ,m and for the jth parameter. The combined estimate of β̂ is obtained by
averaging over the imputations:

β̂ j =
1

m ∑
i

β̂i j

and the combined standard errors are given by:

s2
j =

1

m ∑
i

s2
i j +var β̂ j(1+1/m)

where var β̂ j is the sample variance over the imputed β̂i j. The mi.meld function
makes these calculations:

> (cr <- mi.meld(q=betas,se=ses))

$q.mi

(Intercept) race fire theft age

[1,] -0.22551 0.0075952 0.035828 -0.008689 0.0070798

$se.mi

(Intercept) race fire theft age

[1,] 0.1574 0.0019703 0.0085159 0.0045773 0.0025797

We can compute the t-statistics as:

> cr$q.mi/cr$se.mi

(Intercept) race fire theft age

[1,] -1.4328 3.8548 4.2073 -1.8983 2.7444

Comparing the results to the full data fit seen in the last chapter, we see that the results
are quite close excepting that the theft predictor is no longer statistically significant.

See Little and Rubin (2002) and Schafer (1997) for more about missing data
methods.

Exercises

1. The dataset kanga contains data on the skulls of historical kangaroo specimens.
Ignore the sex and species variables for the purposes of this question.

(a) Report on the distribution of missing values within the data according to case
and variable.

(b) Determine a combination of variable and case deletions that retains the most
information.
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(c) Compute the PCA, omitting all missing cases, where all the variables have
been scaled to have SD 1. Report on the standard deviation of the principal
components.

(d) Perform multiple imputation 25 times, applying PCA in the same manner to
each of the imputed datasets. Combine the standard deviations of the princi-
pal components in the imputed datasets. Compare your answer to the values
obtained in the previous question.

2. The dataset galamiss contains the Galapagos data frequently featured as an ex-
ample in this text as gala but with the original missing values left in.

(a) Fit a linear model using gala with the number of species as the response and
the five geographic predictors as in earlier examples.

(b) Fit the same model to galamiss using the deletion strategy for missing values.
Compare the fit to that in (a).

(c) Use mean value single imputation on galamiss and again fit the model. Com-
pare to previous fits.

(d) Use a regression-based imputation using the other four geographic predictors
to fill in the missing values in galamiss. Fit the same model and compare to
previous fits.

(e) Use multiple imputation to handle missing values and fit the same model again.
Compare to previous fits.

3. The pima dataset contains information on 768 adult female Pima Indians living
near Phoenix.

(a) The analysis in Chapter 1 suggests that zero has been used as a missing value
code for several of the variables. Replace these values with NA. Describe the
distribution of missing values in the data.

(b) Fit a linear model with diastolic as the response and the other variables as
predictors. Summarize the fit.

(c) Use mean value imputation to the missing cases and refit the model comparing
to fit found in the previous question.

(d) Use a regression-based imputation using the other four geographic predictors
to fill in the missing values in the data. Fit the same model and compare to
previous fits.

(e) Use multiple imputation to handle missing values and fit the same model again.
Compare to previous fits.



Chapter 14

Categorical Predictors

Predictors that are qualitative in nature, for example, eye color, are sometimes de-
scribed as categorical or called factors. The different categories of a factor variable
are called levels. For example, suppose we recognize eye colors of “blue”, “green”,
“brown” and “hazel”, then we would say eye color is a factor with four levels.

We wish to incorporate these predictors into the regression analysis. We start with
the example of a factor with just two levels, then show how to introduce quantitative
predictors into the model and end with an example using a factor with more than two
levels.

14.1 A Two-Level Factor

The data for this example come from a study of the effects of childhood sexual abuse
on adult females reported in Rodriguez et al. (1997): 45 women treated at a clinic,
who reported childhood sexual abuse (csa), were measured for post-traumatic stress
disorder (ptsd) and childhood physical abuse (cpa) both on standardized scales.
Thirty-one women treated at the same clinic, who did not report childhood sexual
abuse, were also measured. The full study was more complex than reported here and
so readers interested in the subject matter should refer to the original article.

We take a look at the data and produce a summary subsetted by csa:

> data(sexab,package="faraway")

> sexab

cpa ptsd csa

1 2.04786 9.71365 Abused

2 0.83895 6.16933 Abused

.....

75 2.85253 6.84304 NotAbused

76 0.81138 7.12918 NotAbused

> by(sexab,sexab$csa,summary)

sexab$csa: Abused

cpa ptsd csa

Min. :-1.11 Min. : 5.98 Abused :45

1st Qu.: 1.41 1st Qu.: 9.37 NotAbused: 0

Median : 2.63 Median :11.31

Mean : 3.08 Mean :11.94

3rd Qu.: 4.32 3rd Qu.:14.90

Max. : 8.65 Max. :18.99

----------------------------------------------

sexab$csa: NotAbused

cpa ptsd csa

Min. :-3.12 Min. :-3.35 Abused : 0

205
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1st Qu.:-0.23 1st Qu.: 3.54 NotAbused:31

Median : 1.32 Median : 5.79

Mean : 1.31 Mean : 4.70

3rd Qu.: 2.83 3rd Qu.: 6.84

Max. : 5.05 Max. :10.91

Now plot the data — see Figure 14.1.

> plot(ptsd ~ csa, sexab)

> plot(ptsd ~ cpa, pch=as.character(csa), sexab)
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Figure 14.1 PTSD comparison of abused and non-abused subjects on the left. A =
Abused and N = NotAbused on the right.

We see that those in the abused group have higher levels of PTSD than those in
the non-abused in the left panel of Figure 14.1. We can test this difference:

> t.test(ptsd ~ csa, sexab, var.equal=TRUE)

Two Sample t-test

data: ptsd by csa

t = 8.9387, df = 74, p-value = 2.172e-13

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

5.6302 8.8603

sample estimates:

mean in group Abused mean in group NotAbused

11.9411 4.6959

and find that it is clearly significant. We have specified that the variance is equal in
the two groups. The assumption is reasonable here, but it also ensures comparability
with the linear modeling to follow.

Our strategy is to incorporate qualitative predictors within the y = Xβ+ ε frame-
work. We can then use the estimation, inferential and diagnostic techniques that we
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have already learned in a generic way. This also avoids having to learn a different set
of formulae for each new type of qualitative predictor configuration.

To put qualitative predictors into the y = Xβ+ ε form we need to code the quali-
tative predictors. We can do this using dummy variables. For a categorical predictor
(or factor) with two levels, we define dummy variables d1 and d2:

di =

{

0 is not level i
1 is level i

Let’s create these dummy variables and fit them using a linear model:

> d1 <- ifelse(sexab$csa == "Abused",1,0)

> d2 <- ifelse(sexab$csa == "NotAbused",1,0)

> lmod <- lm(ptsd ~ d1 + d2, sexab)

> sumary(lmod)

Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.696 0.624 7.53 1.0e-10

d1 7.245 0.811 8.94 2.2e-13

n = 76, p = 2, Residual SE = 3.473, R-Squared = 0.52

We can see a warning about singularities and that the parameter for the second
dummy variables has not been estimated. The cause of this problem can be revealed
by studying the X model matrix:

> model.matrix(lmod)

(Intercept) d1 d2

1 1 1 0

2 1 1 0

...

44 1 1 0

45 1 1 0

46 1 0 1

47 1 0 1

...

76 1 0 1

We can see that the sum of the second and third columns equals the first column.
This means that X is not of full rank, having a rank of two, not three. Hence not all
the parameters can be identified. This should not be surprising since we are trying to
use three parameters to model only two groups.

We have more parameters than we need so the solution is to get rid of one of
them. Once choice would be to eliminate d1:

> lmod <- lm(ptsd ~ d2, sexab)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.941 0.518 23.07 < 2e-16

d2 -7.245 0.811 -8.94 2.2e-13

n = 76, p = 2, Residual SE = 3.473, R-Squared = 0.52

Compare this to the output of the t-test. The intercept of 11.941 is the mean of the
first group (“Abused”) while the parameter for d2 represents the difference between
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the second and first group, i.e., 11.941−7.245 = 4.696. The t-value for d2 of −8.94
is the test statistic for the test that the difference is zero and is identical (excepting
the sign) to the test statistic from the t-test computed previously. One assumption of
the linear model is that the variances of the errors are equal which explains why we
specified this option when computing the t-test earlier.

An alternative approach is to eliminate the intercept term:

> lmod <- lm(ptsd ~ d1 + d2 -1, sexab)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

d1 11.941 0.518 23.07 <2e-16

d2 4.696 0.624 7.53 1e-10

n = 76, p = 2, Residual SE = 3.473, R-Squared = 0.89

The advantage of this approach is that the means of the two groups are directly sup-
plied by the parameter estimates of the two dummy variables. However, we do not
get the t-test for the difference. The tests in the output correspond to hypotheses
claiming the mean response in the group is zero. These are not interesting because
these hypotheses are unbelievable.

Furthermore, the solution of dropping the intercept only works when there is a
single factor and does not generalize to the multiple factor case. Another unpleasant
side effect is that the R2 is not correctly computed when the intercept is omitted.
For these reasons, we prefer approach of dropping one of the dummy variables to
dropping the intercept.

It is not necessary to explicitly form the dummy variables as R can produce these
directly by just including the factor in the model formula:

> lmod <- lm(ptsd ~ csa, sexab)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.941 0.518 23.07 < 2e-16

csaNotAbused -7.245 0.811 -8.94 2.2e-13

n = 76, p = 2, Residual SE = 3.473, R-Squared = 0.52

We can check that csa is a factor variable:

> class(sexab$csa)

[1] "factor"

This usually happens automatically when a variable takes non-numeric values al-
though it can be imposed directly if necessary using the factor() command. The
dummy variables are created but one is dropped to ensure identifiability. This is
known as the reference level . In this example, the reference level is “Abused”. At
first glance, one might be perplexed as “Abused” does not appear in the model sum-
mary output. However, the mean response for the reference level is encoded in the
intercept of 11.941. The parameter estimate for “NotAbused” of −7.245 is not the
mean response for this level but the difference from the reference level. Hence the
mean response for the “NotAbused” level is 11.941−7.245 = 4.696. Earlier in our
analysis, we dropped the dummy variable d1 to get the same output.

The choice of reference level is arbitrary. In some examples, there is a natural
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choice for the reference level as a control or no-treatment level. In the current exam-
ple, “NotAbused” is the natural choice for the reference level. The default choice of
reference level by R is the first level in alphabetical order, which would be “Abused”
in this example. Because this choice is inconvenient, we change the reference level
using the relevel command:

> sexab$csa <- relevel(sexab$csa, ref="NotAbused")

> lmod <- lm(ptsd ~ csa, sexab)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.696 0.624 7.53 1.0e-10

csaAbused 7.245 0.811 8.94 2.2e-13

n = 76, p = 2, Residual SE = 3.473, R-Squared = 0.52

A comparison of the outputs reveals that the fitted values and residuals are the
same for either choice — the residual standard error and R2 will be the same. But
the parameterization is different.

Although we have only managed to construct a t-test using linear modeling, a
good understanding of how factor variables are handled in R is essential for the more
sophisticated models to follow.

14.2 Factors and Quantitative Predictors

We can see from our analysis that women who have suffered childhood sexual abuse
tend to have higher levels of PTSD than those who have not. However, we also have
information about varying levels of childhood physical abuse (cpa) which may also
have an effect on PTSD. We need models that can express how a factor variable like
csa and a quantitative variable like cpa might be related to a response.

Suppose we have a response y, a quantitative predictor x and a two-level factor
variable represented by a dummy variable d:

d =

{

0 reference level
1 treatment level

Several possible linear models may be considered here:

1. The same regression line for both levels: y = β0 +β1x+ ε or is written in R as y
~ x. This model allows no effect for the factor.

2. A factor predictor but no quantitative predictor: y = β0 +β2d + ε. This is written
as y ~ d in R.

3. Separate regression lines for each group with the same slope: y = β0 + β1x +
β2d + ε or is written in R as y ~ x + d. In this case β2 represents the vertical
distance between the regression lines (i.e., the effect of the treatment).

4. Separate regression lines for each group with the different slopes: y = β0 +β1x+
β2d +β3x.d + ε or is written in R as y ~ x + d + d:x or y ~ x*d. To form the
slope interaction term d:x in the X-matrix, multiply x by d elementwise. Any
interpretation of the effect of the factor will now also depend on the quantitative
predictor.
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Estimation and testing work just as they did before. Interpretation is easier if we can
eliminate the interaction term.

We start with the separate regression lines model. ptsd ~ cpa*csa is an equiv-
alent model formula which expands to the version seen below:

> lmod4 <- lm(ptsd ~ cpa+csa+cpa:csa,sexab)

> sumary(lmod4)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.696 0.711 5.20 1.8e-06

cpa 0.764 0.304 2.51 0.014

csaAbused 6.861 1.075 6.38 1.5e-08

cpa:csaAbused -0.314 0.368 -0.85 0.397

n = 76, p = 4, Residual SE = 3.279, R-Squared = 0.58

We can discover the coding by examining the X-matrix:

> model.matrix(lmod4)

(Intercept) cpa csaAbused cpa:csaAbused

1 1 2.04786 1 2.04786

2 1 0.83895 1 0.83895

...

45 1 5.11921 1 5.11921

46 1 1.49181 0 0.00000

...

76 1 0.81138 0 0.00000

The interaction term cpa:csaAbused is represented in the fourth column of the ma-
trix as the product of the second and third columns. We show the fitted regression
lines in the first panel of Figure 14.2:

> plot(ptsd ~ cpa, sexab, pch=as.numeric(csa))

> abline(3.96, 0.764)

> abline(3.96+6.86, 0.764-0.314,lty=2)

The model can be simplified because the interaction term is not significant. We
reduce to this model:

> lmod3 <- lm(ptsd ~ cpa+csa,sexab)

> sumary(lmod3)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.975 0.629 6.32 1.9e-08

cpa 0.551 0.172 3.21 0.002

csaAbused 6.273 0.822 7.63 6.9e-11

n = 76, p = 3, Residual SE = 3.273, R-Squared = 0.58

No further simplification is possible because the remaining predictors are statistically
significant. Put the two parallel regression lines on the plot, as seen in the second
panel of Figure 14.2.

> plot(ptsd ~ cpa, sexab, pch=as.numeric(csa))

> abline(3.98, 0.551)

> abline(3.98+6.27, 0.551, lty=2)

The slope of both lines is 0.551, but the “Abused” line is 6.273 higher than the
“NonAbused.” From the t-test earlier, the unadjusted estimated effect of childhood
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Figure 14.2 In all the three panels, the abused cases are marked with a triangle and
the not abused with a circle. The separate lines model fit is shown in the first panel,
the parallel lines model in the second panel and the residuals versus fitted plot in the
third.

sexual abuse is 7.245. So after adjusting for the effect of childhood physical abuse,
our estimate of the effect of childhood sexual abuse on PTSD is mildly reduced.

We can also compare confidence intervals for the effect of csa:

> confint(lmod3)[3,]

2.5 % 97.5 %

4.6347 7.9108

compared to the (5.6302,8.8603) found for the unadjusted difference. In this partic-
ular case, the confidence intervals are about the same width. In other cases, particu-
larly with designed experiments, adjusting for a covariate can increase the precision
of the estimate of an effect.

The usual diagnostics should be checked. It is worth checking whether there is
some difference related to the categorical variable as we do here:

> plot(fitted(lmod3),residuals(lmod3),pch=as.numeric(sexab$csa), xlab

="Fitted",ylab="Residuals")

We see in the final panel of Figure 14.2 that there are no clear problems. Furthermore,
because the two groups happen to separate, we can also see that the variation in the
two groups is about the same. If this were not so, we would need to make some
adjustments to the analysis, possibly using weights.

We have seen that the effect of csa can be adjusted for cpa. The reverse is also
true. Consider a model with just cpa.

> lmod1 <- lm(ptsd ~ cpa,sexab)

> sumary(lmod1)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.552 0.707 9.26 5.3e-14

cpa 1.033 0.212 4.87 6.3e-06

n = 76, p = 2, Residual SE = 4.359, R-Squared = 0.24

After adjusting for the effect of csa, we see size of the effect of cpa is reduced from
1.033 to 0.551.

Finally, we should point out that childhood physical abuse might not be the only
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factor that is relevant to assessing the effects of childhood sexual abuse. It is quite
possible that the two groups differ according to other variables such as socioeco-
nomic status and age. Furthermore, we must regard all causal conclusions from
observational studies with the usual sense of caution. See the original article by
Rodriguez et al. (1997) for more about this.

14.3 Interpretation with Interaction Terms

A homeowner in England recorded his weekly natural gas consumption, in thousands
of cubic feet, during two winter heating seasons. For the second season, cavity wall
insulation had been installed. The homeowner also recorded the average weekly
temperature in degrees Celsius because this would also affect gas consumption. The
data may be found in the MASS package.

> data(whiteside,package="MASS")

We plot the data in Figure 14.3:

> require(ggplot2)

> ggplot(aes(x=Temp,y=Gas),data=whiteside)+geom_point()+facet_grid(~

Insul)+geom_smooth(method="lm")
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Figure 14.3 Weekly gas consumption as a function of weekly temperature before
and after the installation of cavity wall insulation.

We can see that less gas is used after the insulation is installed but the difference
varies by temperature. The relationships appear linear so we fit a model:

> lmod <- lm(Gas ~ Temp*Insul, whiteside)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.8538 0.1360 50.41 < 2e-16

Temp -0.3932 0.0225 -17.49 < 2e-16



FACTORS WITH MORE THAN TWO LEVELS 213

InsulAfter -2.1300 0.1801 -11.83 2.3e-16

Temp:InsulAfter 0.1153 0.0321 3.59 0.00073

n = 56, p = 4, Residual SE = 0.323, R-Squared = 0.93

We would predict that the gas consumption would fall by 0.393 for each 1◦C increase
in temperature before insulation. After insulation, the fall in consumption per degree
is only 0.393− 0.115 = 0.278. But the interpretation for the other two parameter
estimates is more problematic since these represent predicted consumption when the
temperature is zero. This is on the lower edge of the observed range of temperatures
and would not represent a typical difference. For other datasets, a continuous predic-
tor value of zero might be far outside the range and so these parameters would have
little practical meaning.

The solution is to center the temperature predictor by its mean value and recom-
pute the linear model:

> mean(whiteside$Temp)

[1] 4.875

> whiteside$ctemp <- whiteside$Temp - mean(whiteside$Temp)

> lmodc <- lm(Gas ~ ctemp*Insul, whiteside)

> sumary(lmodc)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.9368 0.0642 76.85 < 2e-16

ctemp -0.3932 0.0225 -17.49 < 2e-16

InsulAfter -1.5679 0.0877 -17.87 < 2e-16

ctemp:InsulAfter 0.1153 0.0321 3.59 0.00073

n = 56, p = 4, Residual SE = 0.323, R-Squared = 0.93

Now we can say that the average consumption before insulation at the average tem-
perature was 4.94 and 4.94−1.57 = 3.37 afterwards. The other two coefficients are
unchanged and their interpretation remains the same. Thus we can see that centering
allows a more natural interpretation of the parameter estimates in the presence of
interaction.

14.4 Factors With More Than Two Levels

Suppose we have a factor with f levels, then we create f − 1 dummy variables
d2, . . . ,d f where:

di =

{

0 is not level i
1 is level i

Level one is the reference level.
We demonstrate the use of multilevel factors with a study on the sexual activity

and the life span of male fruitflies by Partridge and Farquhar (1981): 125 fruitflies
were divided randomly into five groups of 25 each. The response was the longevity of
the fruitfly in days. One group was kept solitary, while another was kept individually
with a virgin female each day. Another group was given eight virgin females per
day. As an additional control, the fourth and fifth groups were kept with one or eight
pregnant females per day. Pregnant fruitflies will not mate. The thorax length of
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each male was measured as this was known to affect longevity. The five groups are
labeled isolated, low, high, one and many respectively. The purpose of the analysis
is to determine the difference between the five groups if any. We start with a plot of
the data, as seen in Figure 14.4.

> data(fruitfly,package="faraway")

> plot(longevity ~ thorax, fruitfly, pch=unclass(activity))

> legend(0.63,100,levels(fruitfly$activity),pch=1:5)
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Figure 14.4 Plot of longevity in days and thorax length in millimeters of fruitflies
divided into five treatment groups. Longevity for the high sexual activity group ap-
pears to be lower.

With multiple levels, it can be hard to distinguish the groups. Sometimes it is better to
plot each level separately. This can be achieved nicely with the help of the ggplot2

package:

> require(ggplot2)

> ggplot(aes(x=thorax,y=longevity),data=fruitfly) + geom_point() +

facet_wrap( ~ activity)

The plot, shown in Figure 14.5, makes it clearer that longevity for the high sexual
activity group is lower.

We fit and summarize the most general linear model:

> lmod <- lm(longevity ~ thorax*activity, fruitfly)
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Figure 14.5 Plot of longevity in days and thorax length in millimeters of fruitflies
with each treatment group shown in a separate panel.

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -50.242 21.801 -2.30 0.023

thorax 136.127 25.952 5.25 7.3e-07

activityone 6.517 33.871 0.19 0.848

activitylow -7.750 33.969 -0.23 0.820

activitymany -1.139 32.530 -0.04 0.972

activityhigh -11.038 31.287 -0.35 0.725

thorax:activityone -4.677 40.652 -0.12 0.909

thorax:activitylow 0.874 40.425 0.02 0.983

thorax:activitymany 6.548 39.360 0.17 0.868

thorax:activityhigh -11.127 38.120 -0.29 0.771

n = 124, p = 10, Residual SE = 10.713, R-Squared = 0.65

Since “isolated” is the reference level, the fitted regression line within this group
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is longevity= −50.2+ 136.1∗thorax. For “many,” it is longevity= (−50.2−
1.1)+(136.1+6.5)∗thorax. Similar calculations can be made for the other groups.
Examine:

> model.matrix(lmod)

to see how the coding is done. Some diagnostics should be examined by:

> plot(lmod)

There is perhaps some heteroscedasticity, but we will let this be until later for ease of
presentation. Now we see whether the model can be simplified. The model summary
output is not suitable for this purpose because there are four t-tests corresponding to
the interaction term while we want just a single test for this term. We can obtain this
using:

> anova(lmod)

Analysis of Variance Table

Response: longevity

Df Sum Sq Mean Sq F value Pr(>F)

thorax 1 15003 15003 130.73 < 2e-16

activity 4 9635 2409 20.99 5.5e-13

thorax:activity 4 24 6 0.05 0.99

Residuals 114 13083 115

This is a sequential analysis of variance (ANOVA) table. Starting from a null model,
terms are added and sequentially tested. The models representing the null and alter-
natives are listed in Table 14.1. We wish to successively simplify the full model and

Null Alternative
y~1 y~thorax

y~thorax y~thorax+activity

y~thorax+activity y~thorax+activity+thorax:activity

Table 14.1 Models compared in the sequential ANOVA.

then interpret the result. The interaction term thorax:activity is not significant,
indicating that we can fit the same slope within each group. No further simplification
is possible.

We notice that the F-statistic for the test of the interaction term is very small and
its p-value close to one. For these data, the fitted regression lines to the five groups
happen to be very close to parallel. This can, of course, just happen by chance. In
some other cases, unusually large p-values have been used as evidence that data have
been tampered with or “cleaned” to improve the fit. Most famously, Ronald Fisher
suspected Gregor Mendel of fixing the data in some genetics experiments because
the data seemed too good to be true. See Fisher (1936).

We now refit without the interaction term:

> lmodp <- lm(longevity ~ thorax+activity, fruitfly)

Do we need both thorax and activity? We could use the output above which
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suggests both terms are significant. However, thorax is tested by itself and then
activity is tested once thorax is entered into the model. We might prefer to check
whether each predictor is significant once the other has been taken into account. We
can do this using:

> drop1(lmodp,test="F")

Single term deletions

Model:

longevity ~ thorax + activity

Df Sum of Sq RSS AIC F value Pr(>F)

<none > 13107 590

thorax 1 12368 25476 670 111.3 <2e-16

activity 4 9635 22742 650 21.7 2e-13

The drop1() command tests each term relative to the full model. This shows that
both terms are significant even after allowing for the effect of the other. Now examine
the model coefficients:

> sumary(lmodp)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -48.75 10.85 -4.49 1.6e-05

thorax 134.34 12.73 10.55 < 2e-16

activityone 2.64 2.98 0.88 0.38

activitylow -7.01 2.98 -2.35 0.02

activitymany 4.14 3.03 1.37 0.17

activityhigh -20.00 3.02 -6.63 1.0e-09

n = 124, p = 6, Residual SE = 10.539, R-Squared = 0.65

“Isolated” is the reference level. We see that the intercepts of “one” and “many”
are not significantly different from this reference level. We also see that the low
sexual activity group, “low,” survives about seven days less. The p-value is 0.02 and
is enough for statistical significance if only one comparison is made. However, we
are making more than one comparison, and so, as with outliers, a Bonferroni-type
adjustment might be considered. This would erase the statistical significance of the
difference. However, the high sexual activity group, “high,” has a life span 20 days
less than the reference group and this is strongly significant.

Returning to the diagnostics:

> plot(residuals(lmodp) ~fitted(lmodp),pch=unclass(fruitfly$activity),

xlab="Fitted",ylab="Residuals")

> abline(h=0)

is seen in the first panel of Figure 14.6. We have some non-constant variance al-
though it does not appear to be related to the five groups. A log transformation can
remove the heteroscedasticity:

> lmodl <- lm(log(longevity) ~ thorax+activity, fruitfly)

> plot(residuals(lmodl) ~ fitted(lmodl),pch=unclass(fruitfly$activity)

, xlab="Fitted",ylab="Residuals")

> abline(h=0)

as seen in the second panel of Figure 14.6. One disadvantage of transformation is
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Figure 14.6 Diagnostic plots for the fruitfly data before and after log transformation
of the response.

that it can make interpretation of the model more difficult. Let’s examine the model
fit:

> sumary(lmodl)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.8442 0.1988 9.28 1.0e-15

thorax 2.7215 0.2333 11.67 < 2e-16

activityone 0.0517 0.0547 0.95 0.346

activitylow -0.1239 0.0546 -2.27 0.025

activitymany 0.0879 0.0555 1.59 0.116

activityhigh -0.4193 0.0553 -7.59 8.4e-12

n = 124, p = 6, Residual SE = 0.193, R-Squared = 0.7

Notice that the R2 is higher for this model, but the p-values are similar. Because of
the log transformation, we can interpret the coefficients as having a multiplicative
effect:

> exp(coef(lmodl)[3:6])

activityone activitylow activitymany activityhigh

1.05311 0.88350 1.09189 0.65754

Compared to the reference level, we see that the high sexual activity group has 0.66
times the life span (i.e., 34% less).

Why did we include thorax in the model? Its effect on longevity was known,
but because of the random assignment of the flies to the groups, this variable will
not bias the estimates of the effects of the activities. We can verify that thorax is
unrelated to the activities:

> lmodh <- lm(thorax ~ activity, fruitfly)

> anova(lmodh)

Analysis of Variance Table

Response: thorax
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Df Sum Sq Mean Sq F value Pr(>F)

activity 4 0.026 0.006 1.11 0.36

Residuals 119 0.685 0.006

However, look what happens if we omit thorax from the model for longevity:

> lmodu <- lm(log(longevity) ~ activity, fruitfly)

> sumary(lmodu)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.1193 0.0564 72.99 < 2e-16

activityone 0.0234 0.0798 0.29 0.77

activitylow -0.1195 0.0798 -1.50 0.14

activitymany 0.0240 0.0806 0.30 0.77

activityhigh -0.5172 0.0798 -6.48 2.2e-09

n = 124, p = 5, Residual SE = 0.282, R-Squared = 0.36

The magnitudes of the effects do not change that much but the standard errors are
substantially larger. The value of including thorax in this model is to increase the
precision of the estimates.

14.5 Alternative Codings of Qualitative Predictors

Sometimes an alternative coding of factor variables can be useful.
Let B be an n× k dummy variable matrix where Bi j = 1 if case i falls in class j

and is zero otherwise. We might use B to form part of the model matrix. However,
the row sums of B are all one. Since an intercept term would also be represented by
a column of ones, all the parameters would not be identifiable.

Removing the intercept term is one solution, but this will not work well if there
is more than one factor. A more general solution is to reduce the rank of the dummy
variable matrix. Simply deleting one column would do, but any solution that avoids
collinear dummy variables will work. The choice should be based on convenience of
interpretation and numerical stability.

The coding is determined by a contrast matrix C which has dimension k×(k−1).
Some examples of C are given below. The contribution to the model matrix is then
given by BC. Other columns of the model matrix might include a column of ones for
the intercept and perhaps other predictors.

Treatment coding
Consider a four-level factor that will be coded using three dummy variables. This

contrast matrix describes the coding, where the columns represent the dummy vari-
ables and the rows represent the levels:

> contr.treatment(4)

2 3 4

1 0 0 0

2 1 0 0

3 0 1 0

4 0 0 1

This treats level one as the standard level to which all other levels are compared so
a control group, if one exists, would be appropriate for this level. The parameter for



220 CATEGORICAL PREDICTORS

the dummy variable then represents the difference between the given level and the
first level. R assigns levels to a factor in alphabetical order by default. Treatment
coding is the default choice for R.

Helmert coding

The coding here is:

> contr.helmert(4)

[,1] [,2] [,3]

1 -1 -1 -1

2 1 -1 -1

3 0 2 -1

4 0 0 3

If there are equal numbers of observations in each level (a balanced design) then the
dummy variables will be orthogonal to each other and to the intercept. This coding
is not as helpful for interpretation except in some special cases.

Sum coding

This coding uses:

> contr.sum(4)

[,1] [,2] [,3]

1 1 0 0

2 0 1 0

3 0 0 1

4 -1 -1 -1

This coding might be preferred, particularly when there is no natural reference level.
We can illustrate this using a previous example:

> contrasts(sexab$csa) <- contr.sum(2)

> sumary(lm(ptsd ~ csa, sexab))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.318 0.405 20.53 < 2e-16

csa1 -3.623 0.405 -8.94 2.2e-13

n = 76, p = 2, Residual SE = 3.473, R-Squared = 0.52

The mean response is 8.3, while the “NotAbused” mean is 8.3−3.6 and the “Abused”
mean is 8.3+3.6.

There are other choices of coding — anything that spans the k− 1 dimensional
space will work. The choice of coding does not affect the R2, σ̂2 and overall F-
statistic. It does affect the β̂ and you do need to know what the coding is before
making conclusions about β̂.

Exercises

1. Using the teengamb data, model gamble as the response and the other variables
as predictors, investigate the possibility of interactions between sex and the other
predictors. Interpret your final model.



ALTERNATIVE CODINGS OF QUALITATIVE PREDICTORS 221

2. Using the infmort data, find a simple model for the infant mortality in terms of
the other variables. Be alert for transformations and unusual points. Interpret your
model by explaining what the regression parameter estimates mean.

3. Plot the ToothGrowth data with len as the response. Fit a linear model to the
data and check for possible simplification. Display the fitted regression lines on
top of the data.

4. Investigate whether the side variable can be used in a model for all the chredlin
data rather than as a subsetting variable as in the analysis in the text.

5. Find a good model for the uswages data with wages as the response and all the
other variables as predictors.

6. The dataset clot contains the clotting times of blood varying as percentage con-
centration of prothrombin-free plasma. There are two lots of thromboplastin.

(a) Plot the data using a different plotting symbol according to the lot.

(b) Find the transformation of the two continuous variables to form a linear rela-
tionship.

(c) Does the time to clot vary according to concentration differently in the two
lots?

(d) Check the assumptions of your model using regression diagnostics.

(e) At what percentage concentration is the predicted time the same for the two
lots?

7. The wealth in billions of dollars for 232 billionaires is given in fortune.

(a) Plot the wealth as a function of age using a different plotting symbol for the
different regions of the world.

(b) Plot the wealth as a function of age with a seperate panel for each region.

(c) Determine a transformation on the response to facilitate linear modeling.

(d) What is the relationship of age and region to wealth?

(e) Check the assumptions of your model using appropriate diagnostics.

8. Ankylosing spondylitis is a chronic form of arthritis. A study was conducted to
determine whether daily stretching of the hip tissues would improve mobility. The
data are found in hips. The flexion angle of the hip before the study is a predictor
and the flexion angle after the study is the response.

(a) Plot the data using different plotting symbols for the treatment and the control
status.

(b) Fit a model to determine whether there is a treatment effect.

(c) Compute the difference between the flexion before and after and test whether
this difference varies between treatment and control. Contrast this approach to
your previous model.

(d) Check for outliers. Explain why we might remove the three cases with fbef

less than 90. Refit an appropriate model and check for a treatment effect.

(e) What is the estimated size of the treatment effect? Give a 95% confidence
interval.
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(f) Both legs of each subject have been included in the study as seperate observa-
tions. Explain what difficulties this causes with the model assumptions.

(g) Compute the average angles for each subject and repeat the modeling with this
reduced dataset. Point out any differences in the conclusions.



Chapter 15

One Factor Models

Linear models with only categorical predictors (or factors) have traditionally been
called analysis of variance (ANOVA) problems. The idea is to partition the overall
variance in the response due to each of the factors and the error. This traditional
approach is exemplified by Scheffé (1959).

Although some insight can be gained by considering the problem from this per-
spective, the price is an increasingly complex set of specialized formulae required
for each type of model depending on the configuration of factors. Instead, we take a
regression-based approach by putting the model into the y = Xβ+ ε format and then
using the inferential methods we have already developed.

The terminology used in ANOVA-type problems is sometimes different. Predic-
tors are now all qualitative and are now typically called factors, which have some
number of levels. The regression parameters are now often called effects. We shall
consider only models where the parameters are considered fixed, but unknown —
called fixed-effects models. Random-effects models are used where parameters are
taken to be random variables and are not covered in this text.

15.1 The Model

Suppose we have a factor α occurring at i = 1, . . . , I levels, with j = 1, . . . ,Ji obser-
vations per level. We use the model:

yi j = µ+αi + εi j

The parameters are not identifiable. For example, we could add some constant to µ

and subtract the same constant from each αi and the fit would be unchanged. Some
restriction is necessary. Here are some possibilities:

1. Drop µ from the model and use I different dummy variables to estimate αi for
i = 1, . . . , I. This is feasible but does not extend well to models with more than
one factor as more than one parameter needs to be dropped.

2. Set α1 = 0, then µ represents the expected mean response for the first level and αi

for i ̸= 1 represents the difference between level i and level one. Level one is then
called the reference level or baseline level. This can be achieved using treatment
contrasts as discussed in the previous chapter.

3. Set ∑i αi = 0, now µ represents the mean response over all levels and αi, the
difference from that mean. This requires the use of sum contrasts.

223
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The choice of constraint from those listed above or otherwise will determine the
coding used to generate the X-matrix. Once that is done, the parameters (effects)
can be estimated in the usual way along with standard errors. No matter which valid
constraint and coding choice is made, the fitted values and residuals will be the same.

Once the effects are estimated, the natural first step is to test for differences in the
levels of the factor. An explicit statement of the null and alternative hypotheses would
depend on the coding used. If we use the treatment coding with a reference level,
then the null hypothesis would require that α2 = · · ·= αI = 0. For other codings, the
statement would differ. It is simpler to state the hypotheses in terms of models:

H0 : yi j = µ+ εi j

H1 : yi j = µ+αi + εi j

We compute the residual sum of squares and degrees of freedom for the two models
and then use the same F-test as we have used for regression. The outcome of this test
will be the same no matter what coding/restriction we use. If we do not reject the
null, we are almost done — we must still check for a possible transformation of the
response and outliers. If we reject the null, we must investigate which levels differ.

15.2 An Example

Twenty-four animals were randomly assigned to four different diets and blood sam-
ples were taken in a random order. The blood coagulation time was measured. These
data come from Box et al. (1978):

> data(coagulation, package="faraway")

> coagulation

coag diet

1 62 A

2 60 A

...etc...

23 63 D

24 59 D

Some preliminary graphical analysis is essential before fitting. The default plotting
method in base R graphics is the side-by-side boxplot. Although this plot has strong
visual impact for comparison, a stripchart can be better for smaller datasets:

> plot(coag ~ diet, coagulation,ylab="coagulation time")

> stripchart(coag ~ diet, coagulation, vertical=TRUE, method="stack",

xlab="diet",ylab="coagulation time")

The boxplot in Figure 15.1 shows how the four levels vary but there is something
odd about the display of diet C because the median and upper quartile are the same.
The stripchart shows the ties in the data in diets C and D.

We are looking for several features in these plots. We must check for equality
of variance in the groups, which seems satisfied in this example. We are looking for
evidence of skewness showing a lack of normality. This might suggest a transforma-
tion of the response. There is no such concern in this example. Finally, we should
look for outliers — there are none to be seen in this example.
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Figure 15.1 A boxplot on the left and a stripchart on the right showing the blood
coagulation data.

It is not worth considering diagnostics for influence, as the leverages depend
explicitly on Ji. If there is only one observation for a given level, that is Ji = 1, then
the estimate of the effect for that level will be based on that single point. That point
is clearly influential without further investigation.

Now let’s fit the model using the default treatment coding:

> lmod <- lm(coag ~ diet, coagulation)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.10e+01 1.18e+00 51.55 < 2e-16

dietB 5.00e+00 1.53e+00 3.27 0.00380

dietC 7.00e+00 1.53e+00 4.58 0.00018

dietD 2.99e-15 1.45e+00 0.00 1.00000

n = 24, p = 4, Residual SE = 2.366, R-Squared = 0.67

Rounding error results in a rather unfortunate formatting of the results. The coeffi-
cients can be more cleanly seen as:

> round(coef(lmod),1)

(Intercept) dietB dietC dietD

61 5 7 0

Group A is the reference level and has a mean of 61, groups B, C and D are 5, 7 and
0 seconds larger, respectively, on average. Examine the design matrix to understand
the coding:

> model.matrix(lmod)

The three test statistics for the group levels correspond to comparisons with the ref-
erence level A. Although these are interesting, they do not specifically answer the
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question of whether there is a significant difference between any of the levels. This
test can be obtained as:

> anova(lmod)

Analysis of Variance Table

Response: coag

Df Sum Sq Mean Sq F value Pr(>F)

diet 3 228 76.0 13.6 0.000047

Residuals 20 112 5.6

We see that there is indeed a difference in the levels although this test does not tell
us which levels are different from others.

We can fit the model without an intercept term as in:

> lmodi <- lm(coag ~ diet -1, coagulation)

> sumary(lmodi)

Estimate Std. Error t value Pr(>|t|)

dietA 61.000 1.183 51.5 <2e-16

dietB 66.000 0.966 68.3 <2e-16

dietC 68.000 0.966 70.4 <2e-16

dietD 61.000 0.837 72.9 <2e-16

n = 24, p = 4, Residual SE = 2.366, R-Squared = 1

We can directly read the level means. The R2 is not correctly calculated because of
the absence of an intercept. To generate the usual test that the means of the levels are
equal, we would need to fit the null model and compare using an F-test:

> lmnull <- lm(coag ~ 1, coagulation)

> anova(lmnull,lmodi)

Analysis of Variance Table

Model 1: coag ~ 1

Model 2: coag ~ diet - 1

Res.Df RSS Df Sum of Sq F Pr(>F)

1 23 340

2 20 112 3 228 13.6 0.000047

We get the same F-statistic and p-value as in the first coding.
We can also use a sum coding:

> options(contrasts=c("contr.sum","contr.poly"))

> lmods <- lm(coag ~ diet , coagulation)

> sumary(lmods)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 64.000 0.498 128.54 < 2e-16

diet1 -3.000 0.974 -3.08 0.00589

diet2 2.000 0.845 2.37 0.02819

diet3 4.000 0.845 4.73 0.00013

n = 24, p = 4, Residual SE = 2.366, R-Squared = 0.67

So the estimated overall mean response is 64 while the estimated mean response for
A is three less than the overall mean, that is, 61. Similarly, the means for B and
C are 66 and 68, respectively. Since we are using the sum constraint, we compute
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α̂D = −(−3+2+4) = −3 so the mean for D is 64−3 = 61. Notice that σ̂ and the
R2 are the same as before.

So we can use any of these three methods and obtain essentially the same results.
Dropping the intercept is least convenient since an extra step is needed to generate the
F-test. Furthermore, the approach would not extend well to experiments with more
than one factor, as additional constraints would be needed. The other two methods
can be used according to taste. The treatment coding is most appropriate when the
reference level is set to a possible control group. We will use the treatment coding
by default, as does R, for the rest of this book.

15.3 Diagnostics

There are fewer diagnostics to do for ANOVA models, but it is still important to plot
the residuals and fitted values and to make the Q–Q plot of the residuals. It makes
no sense to transform the predictor, but it is reasonable to consider transforming the
response. Diagnostics are shown in Figure 15.2.

> qqnorm(residuals(lmod))

> qqline(residuals(lmod))

> plot(jitter(fitted(lmod)),residuals(lmod),xlab="Fitted",ylab="

Residuals")

> abline(h=0)
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Figure 15.2 Diagnostics for the blood coagulation model.

Because the data are integers and the fitted values happen to be integers also, some
discreteness is obvious in the Q–Q plot. Of course, discrete data cannot be normally
distributed. However, here the residuals are approximately normal and so we can go
ahead with the inference without much concern. The discreteness in the residuals
and fitted values shows up in the residual-fitted plot. We have jittered the points so
that they can seen separately.
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The assumption of homogeneity of the error variance can be examined using
Levene’s test. It computes the absolute values of the residuals and uses these as the
response in a new one-way ANOVA. To reduce the possible influence of outliers,
group medians rather than means should be used. A significant difference would
indicate non-constant variance.

Most tests and confidence intervals (CIs) are relatively insensitive to non-constant
variance so there is no need to take action unless the Levene test is significant at the
1% level.

Applying this to the diet data, we find:

> med <- with(coagulation,tapply(coag,diet,median))

> ar <- with(coagulation,abs(coag -med[diet]))

> anova(lm(ar ~ diet,coagulation))

Analysis of Variance Table

Response: ar

Df Sum Sq Mean Sq F value Pr(>F)

diet 3 4.3 1.4 0.65 0.59

Residuals 20 44.5 2.2

Since the p-value is large, we conclude that there is no evidence of a non-constant
variance.

An alternative test is due to Bartlett:

> bartlett.test(coag ~ diet, coagulation)

Bartlett test of homogeneity of variances

data: coag by diet

Bartlett’s K-squared = 1.668, df = 3, p-value = 0.6441

Again, no difference is found. Levene’s test is more robust to outliers.

15.4 Pairwise Comparisons

After detecting some difference in the levels of the factor, interest centers on which
levels or combinations of levels are different. It does not make sense to ask whether
a particular level is significant since this begs the question of “significantly different
from what?” Any meaningful test must involve a comparison of some kind.

A pairwise comparison of level i and j can be made using a CI for αi −α j using:

α̂i − α̂ j ± t
α/2
d f se(α̂i − α̂ j)

where se(α̂i − α̂ j) = σ̂
√

1/Ji +1/Jj and df = n− I in this case. A test for αi = α j

amounts to seeing whether zero lies in this interval or not. For example, let’s find a
95% CI for B−A. From the model output, we can see that the difference is 5.0 with
a standard error of 1.53. For differences not involving the reference level of A, more
effort would be required to calculate these values. The interval is:

> 5 + c(-1,1) * qt(0.975, 24-4) * 1.53

[1] 1.8085 8.1915
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Since zero is not in the interval, the difference is significant. This is fine for just
one test, but we are likely to be interested in more than one comparison. Suppose
we do all possible pairwise tests when α = 5% and the null hypothesis is in fact
true. In the blood coagulation data, there are four levels and so six possible pairwise
comparisons. Even if there was no difference between the four levels, there is still
about a 20% chance that at least one significant difference will be found.

For experiments with more levels, the true type I error gets even higher. Using the
t-based CIs for multiple comparisons is called the least significant difference (LSD)
method, but it can hardly be recommended. Now one might be tempted to argue
that we could choose which comparisons are interesting and so reduce the amount of
testing and thus the magnitude of the problem. If we only did a few tests, then the
Bonferroni adjustment (see Section 6.2.2) could be used to make a simple correction.
However, the determination of which comparisons are “interesting” is usually made
after seeing the fitted model. This means that all other comparisons are implicitly
made even if they are not explicitly computed. On the other hand, if it can be argued
that the comparisons were decided before seeing the fit, then we could make the case
for the simple adjustment. However, this is rarely the case and furthermore it might
be difficult to convince others that this really was your intention. We must usually
find a way to adjust for all pairwise comparisons.

There are many ways to make the adjustment, but Tukey’s honest significant

difference (HSD) is the easiest to understand. It depends on the studentized range
distribution which arises as follows. Let X1, . . . ,Xn be i.i.d. N(µ,σ2) and let R =
maxi Xi −mini Xi be the range. Then R/σ̂ has the studentized range distribution qn,ν

where ν is the number of degrees of freedom used in estimating σ.
The Tukey CIs are:

α̂i − α̂ j ±
qI,d f√

2
σ̂(1/Ji +1/Jj)

When the level sample sizes Ji are very unequal, Tukey’s HSD test may become
too conservative. We compute the Tukey HSD bands for the B-A difference. The
critical value from the studentized range distribution is obtained from the qtukey()

function:

> se <- summary(lmod)$sigma

> 5 + c(-1,1) * qtukey(0.95, 4, 24-4)/sqrt(2) * se * sqrt(1/4 +1/6)

[1] 0.72455 9.27545

A convenient way to obtain all the intervals is:

> (tci <- TukeyHSD(aov(coag ~ diet, coagulation)))

Tukey multiple comparisons of means

95% family -wise confidence level

Fit: aov(formula = coag ~ diet , data = coagulation)

$diet

diff lwr upr p adj

B-A 5 0.72455 9.2754 0.01833

C-A 7 2.72455 11.2754 0.00096
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D-A 0 -4.05604 4.0560 1.00000

C-B 2 -1.82407 5.8241 0.47660

D-B -5 -8.57709 -1.4229 0.00441

D-C -7 -10.57709 -3.4229 0.00013

We find that only the A−D and B−C differences are not significant as the corre-
sponding intervals contain zero. The duality between confidence intervals and hy-
pothesis testing can also be used to produce an adjusted p-value as seen in the final
column of the output. This merely confirms our impression of which differences are
significant. The intervals can be plotted as seen in Figure 15.3.
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Figure 15.3 Tukey HSD 95% confidence intervals for the pairwise differences.

> plot(tci)

The Tukey method assumes the worst by focusing on the largest difference. There are
other competitors like the Newman–Keuls, Duncan’s multiple range and the Waller–
Duncan procedure, which are less pessimistic or do not consider all possible pairwise
comparisons. For a detailed description of the many available alternatives see Bretz,
Hothorn, and Westfall (2010) and the R package multcomp.

15.5 False Discovery Rate

Consider some data taken from the Junior School Project collected from primary
(US term is elementary) schools in inner London. The data is described in detail in
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Mortimore et al. (1988). We focus on just two of the variables in the data — the
school, of which there are 49, and the mathematics test scores for students from
these schools. Suppose we are interested in deviations from the average and so we
center the scores:

> data(jsp, package="faraway")

> jsp$mathcent <- jsp$math - mean(jsp$math)

A more pleasing plot of the data can be obtained using the ggplot2 package as seen
in Figure 15.4. We have to rotate the school labels so they can be distinguished.

> require(ggplot2)

> ggplot(aes(x=school,y=mathcent),data=jsp)+geom_boxplot() + theme(

axis.text.x = element_text(angle = 90))+ylab("Centered Math

Scores")
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Figure 15.4 Variation-centered math scores by school.

Let’s choose the parameterization that omits the intercept term:

> lmod <- lm(mathcent ~ school-1, jsp)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

school1 -3.3685 0.7686 -4.38 1.2e-05

school2 0.6714 1.2287 0.55 0.58481

...

school50 -2.6520 0.7336 -3.62 0.00030

n = 3236, p = 49, Residual SE = 7.372, R-Squared = 0.08

Since we have centered the response, the t-tests, which check for differences from
zero, are meaningful. We can see there is good evidence that schools 1 and 50 are
significantly below average while the evidence that school 2 is above average is not
statistically significant. We can test for a difference between the schools:
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> anova(lm(mathcent ~ school, jsp))

Analysis of Variance Table

Response: mathcent

Df Sum Sq Mean Sq F value Pr(>F)

school 48 15484 323 5.94 <2e-16

Residuals 3187 173212 54

We find a strongly significant difference. This comes as little surprise as the sample
size is large, giving us the power to detect quite small differences. Furthermore,
we may have strong prior reasons to expect differences between the schools. A
more interesting question is which schools show clear evidence of under- or over-
performance?

There are too many pairwise comparisons on which to focus our interest. Instead
let us ask which schools have means significantly different from the average. The
parameterization we have chosen makes these comparisons easy but we would expect
about 5% of these differences to be significant even if the null hypothesis held.

Some adjustment is necessary. One approach is to control the familywise error

rate (FWER) which is the overall probability of falsely declaring a difference (where
none exists). The Bonferroni correction is a simple way to do this. We just multiply
the unadjusted p-values by the number of comparisons. Any probability computed
above one is truncated to one. Let’s see which schools have adjusted p-values less
than 5%:

> pvals <- summary(lmod)$coef[,4]

> padj <- p.adjust(pvals, method="bonferroni")

> coef(lmod)[padj < 0.05]

school1 school16 school21 school28 school31 school40 school45

-3.3685 -3.7374 -3.6185 -5.8286 3.8241 -4.9855 -4.6392

school50

-2.6520

We see that eight schools are identified with all except school 31 marked as signifi-
cantly below average.

The Bonferroni correction is known to be conservative but even were we to use
one of the more generous alternatives, the familywise error rate restriction imposes
a high bar on the identification of significant effects. As the number of levels being
compared increases, this requirement becomes ever more stringent.

An alternative approach is to control the false discovery rate (FDR) which is the
proportion of effects identified as significant which are not real. The best known
method of doing this is due to Benjamini and Hochberg (1995).

Given sorted p-values p(i) for i = 1, . . . ,m the procedure finds the largest i for
which p(i) ≤ αi/m. All tests corresponding to p(i) up to and including this i are
declared significant. We compute this for our example:

> names(which(sort(pvals) < (1:49)*0.05/49))

[1] "school28" "school31" "school21" "school1" "school45" "school40"

[7] "school16" "school50" "school47" "school49" "school4" "school36"

[13] "school46" "school14" "school24" "school27" "school34" "school9"
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We see that 18 schools are identified compared to the 8 by the previous procedure.
FDR is less stringent than FWER in identifying significant effects. A more conve-
nient method of computing the adjusted p-values is:

> padj <- p.adjust(pvals, method="fdr")

> coef(lmod)[padj < 0.05]

school1 school4 school9 school14 school16 school21 school24

-3.3685 -2.6619 2.2458 -3.2898 -3.7374 -3.6185 2.6238

school27 school28 school31 school34 school36 school40 school45

-2.3058 -5.8286 3.8241 1.9359 2.3605 -4.9855 -4.6392

school46 school47 school49 school50

3.0636 2.3969 2.7964 -2.6520

FDR methods are more commonly used where large numbers of comparisons are
necessary as often found in imaging or bioinformatics applications. In examples
such as these, we expect to find some significant effects and FDR is a useful tool in
reliably identifying them.

Exercises

1. Using the pulp data, determine whether there are any differences between the
operators. What is the nature of these differences?

2. Determine whether there are differences in the weights of chickens according to
their feed in the chickwts data. Perform all necessary model diagnostics.

3. Using the PlantGrowth data, determine whether there are any differences be-
tween the groups. What is the nature of these differences? Test for a difference
between the average of the two treatments and the control.

4. Using the infmort data, perform a one-way ANOVA with income as the response
and region as the predictor. Which pairs of regions are different? Now check for
a good transformation on the response and repeat the comparison.

5. The anaesthetic data provides the time to restart breathing unassisted in recov-
ering from general anaesthetic for four treatment groups.

(a) Produce a boxplot depicting the data. Comment on any features of interest.

(b) Make an appropriate stripchart of the data.

(c) Produce versions of the previous two plots using the ggplot2 package. Show
how you can overlay these two plots.

(d) Fit a one-factor model for the recovery times and test for a difference between
the two groups.

(e) Try the Box-Cox transformation method. Explain what went wrong.

(f) Try a square root transformation on the response. Are the diagnostics satisfac-
tory? Is there a significant difference among the treatment groups?

6. Data on the butterfat content of milk from Canadian cows of five different breeds
can be found in the butterfat dataset. Consider only mature cows.

(a) Plot the data and interpret what you see.

(b) Test for a difference between the breeds.
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(c) Check the diagnostics for your model.

(d) Produce a plot to check for differences in butterfat between breeds. Which
pairwise differences are not statistically signifcant?

7. Five suppliers cut denim for a jeans manufacturer. The amount of waste relative
to a target was collected weekly as seen in the denim dataset.

(a) Plot the data to determine which supplier wastes the least. Which supplier is
best in terms in minimizing maximum weekly waste?

(b) Is there a significant difference in wastage between the suppliers?

(c) Check the regression diagnostics commenting on any violations.

(d) Remove two outliers and repeat the test for a significant difference. Which
supplier has the lowest predicted wastage under this model?

(e) Check for significant pairwise differences between suppliers. Which pairs are
significantly different?

(f) Which supplier would you pick if there was no other relevant difference be-
tween them? What if the cost of the suppliers was in numerical order with the
first the most expensive and five the cheapest?



Chapter 16

Models with Several Factors

In this chapter, we show how to model data with more than one categorical predic-
tor. Sometimes the data can arise from observational studies but such data more
commonly arises from designed experiments, often called factorial designs. If all
possible combinations of the levels of the factors occur at least once, then we have a
full factorial design. Repeated observations for the same combination of factor levels
are called replicates.

We start with models involving two factors with no replication. It is possible
that the factors can interact but this is difficult to investigate without replication.
We consider examples with and without significant interaction and discuss how they
should be interpreted. Replication can be expensive so sometimes it is better to use
the experimental resources to investigate more factors. This leads us to an example
with many factors but no replication.

16.1 Two Factors with No Replication

Mazumdar and Hoa (1995) report an experiment to test the strength of a thermoplas-
tic composite depending on the power of a laser and the speed of a tape:

> data(composite, package="faraway")

> composite

strength laser tape

1 25.66 40W slow

2 29.15 50W slow

3 35.73 60W slow

4 28.00 40W medium

5 35.09 50W medium

6 39.56 60W medium

7 20.65 40W fast

8 29.79 50W fast

9 35.66 60W fast

The data has been plotted in Figure 16.1 with roles of the two factors shown in both
ways to give better insight.

> require(ggplot2)

> ggplot(composite,aes(x=laser,y=strength,group=tape,linetype=tape))+

geom_line()+theme(legend.position = "top", legend.direction = "

horizontal")

> ggplot(composite,aes(x=tape,y=strength,group=laser,linetype=laser))+

geom_line()+theme(legend.position = "top", legend.direction = "

horizontal")

235
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Figure 16.1 Plots for the composite data — the role of the predictors is reversed in
each plot.

We can see in the first plot that medium tape speed is best for strength while in
the second we see that the 60W setting for laser is best. When there is little or no
interaction effect, we would expect the lines in each plot to be approximately parallel
(i.e., a constant distance apart). This would be a sign that the effects are additive. Of
course, we must allow for a certain amount of noise clouding the observation, but in
this example, the lines do appear to be roughly parallel.

A general model for this type of data is:

yi j = µ+αi +β j +(αβ)i j + εi j

where i = 1, . . . I and j = 1, . . .J. The αβ terms represent interactions between the
levels of α and β.

We fit this model to the current example:

> lmod <- lm(strength ~ laser + tape + laser:tape, composite)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 25.66 NA NA NA

laser50W 3.49 NA NA NA

laser60W 10.07 NA NA NA

tapemedium 2.34 NA NA NA

tapefast -5.01 NA NA NA

laser50W:tapemedium 3.60 NA NA NA

laser60W:tapemedium 1.49 NA NA NA

laser50W:tapefast 5.65 NA NA NA

laser60W:tapefast 4.94 NA NA NA

n = 9, p = 9, Residual SE = NaN, R-Squared = 1
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We have parameter estimates but nothing else. The model has as many parameters
as cases so a perfect fit has been achieved. Unfortunately, no further inference is
possible and little has been gained from this model.

We cannot check for an interaction directly by adding such a term to the model
but Tukey’s nonadditivity test provides another way of investigating for an interac-
tion. The model:

yi j = µ+αi +β j +φαiβ j + εi jk

is fit to the data and then we test if φ = 0. This is a nonlinear model because it
involves a product of parameters, φαiβ j which is difficult to fit in general. We get
around this problem by fitting the model in stages. First we fit the model with no
interaction and extract the estimates of the main effects, noting that the first level is
the reference level:

> lmod <- lm(strength ~ laser + tape, composite)

> coef(lmod)

(Intercept) laser50W laser60W tapemedium tapefast

23.9178 6.5733 12.2133 4.0367 -1.4800

> lasercoefs <- rep(c(0,6.5733,12.2133),3)

> tapecoefs <- rep(c(0,4.0367,-1.4800),each=3)

Now we update the model with the new predictor formed from the products of the
main effects:

> tmod <- update(lmod, . ~ . + I(lasercoefs*tapecoefs))

> anova(tmod)

Analysis of Variance Table

Response: strength

Df Sum Sq Mean Sq F value Pr(>F)

laser 2 224.2 112.1 36.82 0.0077

tape 2 48.9 24.5 8.03 0.0624

I(lasercoefs * tapecoefs) 1 1.4 1.4 0.45 0.5503

Residuals 3 9.1 3.0

The p-value of 0.55 indicates a nonsignificant interaction. So for these data, we
might reasonably assume (αβ)i j = 0. The major drawback is that the test makes the
assumption that the interaction effect is multiplicative in form. We have no particular
reason to believe it takes this form and so this alternative hypothesis may not be
looking in the right place. Although judging whether lines on a plot are parallel
requires some subjective judgment, it may be a more reliable method of checking for
interaction here.

Now that the issue of interactions has been addressed, we can check the signifi-
cance of the main effects:

> anova(lmod)

Analysis of Variance Table

Response: strength

Df Sum Sq Mean Sq F value Pr(>F)

laser 2 224.2 112.1 42.69 0.002

tape 2 48.9 24.5 9.32 0.031

Residuals 4 10.5 2.6
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We see that both factors are significant.
The treatment coding does not take advantage of the ordered nature of both fac-

tors. Factors without an ordering to the levels are called nominal while those that
possess a natural ordering are called ordinal. We can declare both to be ordered

factors and refit:

> composite$laser <- as.ordered(composite$laser)

> composite$tape <- as.ordered(composite$tape)

> lmod <- lm(strength ~ laser + tape, composite)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 31.032 0.540 57.45 5.5e-07

laser.L 8.636 0.936 9.23 0.00077

laser.Q -0.381 0.936 -0.41 0.70466

tape.L -1.047 0.936 -1.12 0.32594

tape.Q -3.900 0.936 -4.17 0.01404

n = 9, p = 5, Residual SE = 1.620, R-Squared = 0.96

Instead of a coding with respect to a reference level, we have linear and quadratic
terms for each factor. The coding is:

> round(model.matrix(lmod),2)

(Intercept) laser.L laser.Q tape.L tape.Q

1 1 -0.71 0.41 -0.71 0.41

2 1 0.00 -0.82 -0.71 0.41

3 1 0.71 0.41 -0.71 0.41

4 1 -0.71 0.41 0.00 -0.82

5 1 0.00 -0.82 0.00 -0.82

6 1 0.71 0.41 0.00 -0.82

7 1 -0.71 0.41 0.71 0.41

8 1 0.00 -0.82 0.71 0.41

9 1 0.71 0.41 0.71 0.41

We see the linear term is proportional to (−1,0,1) representing a linear trend across
the levels while the quadratic term is proportional to (1,−2,1) representing a quadratic
trend.

We see that the quadratic term for laser power is not significant while there is
a quadratic effect for tape speed. One of the drawbacks of a model with factors
is the difficulty of extrapolating to new conditions. The information gained from
the ordered factors suggests a model with numerical predictors corresponding to the
level values (the values for the tape speed are obtained from the R help page for
composite).

> composite$Ntape <- rep(c(6.42,13,27),each=3)

> composite$Nlaser <- rep(c(40,50,60),3)

> lmodn <- lm(strength ~ Nlaser + poly(log(Ntape),2), composite)

> sumary(lmodn)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4989 3.0592 0.16 0.87684

Nlaser 0.6107 0.0604 10.11 0.00016

poly(log(Ntape), 2)1 -1.8814 1.4791 -1.27 0.25933

poly(log(Ntape), 2)2 -6.7364 1.4791 -4.55 0.00609

n = 9, p = 4, Residual SE = 1.479, R-Squared = 0.96
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We use the log of tape speed, as this results in roughly evenly spaced levels. This
model fits about as well as the two-factor model but has the advantage that we make
predictions for values of tape speed and laser power that were not used in the exper-
iment. The earlier analysis with factors alone helped us discover this model, which
we may not otherwise have found.

16.2 Two Factors with Replication

Consider the case when the number of observations per combination of factor levels
is the same and greater than one. Such a layout results in an orthogonal design matrix.
With the benefit of replication, we are now free to fit and test the full model:

yi jk = µ+αi +β j +(αβ)i j + εi jk

The interaction effect is tested by fitting a model without the (αβ)i j term and com-
puting the usual F-test. If the interaction effect is found to be significant, we do not
test the main effects even if they appear not to be significant.

In an experiment to study factors affecting the production of the polyvinyl chlo-
ride (PVC) plastic, three operators used eight different devices called resin railcars
to produce PVC. For each of the 24 combinations, two samples were produced. The
response is the particle size of the product. The experiment is described in Morris
and Watson (1998).

We make plots with respect to each of the predictors, as seen in Figure 16.2:

> data(pvc, package="faraway")

> require(ggplot2)

> p <- ggplot(pvc, aes(x=operator,y=psize))+geom_point()+stat_summary(

fun.y="mean",geom="line",aes(group=resin))

> op1means <- with(pvc[pvc$operator == 1,],sapply(split(psize,resin),

mean))

> tdf <- data.frame(x=rep(0.9,8),y=op1means,label=1:8)

> p + geom_text(data=tdf,aes(x=x,y=y,label=label))

> ggplot(pvc, aes(x=resin,y=psize,shape=operator))+geom_point()+stat_

summary(fun.y="mean",geom="line",aes(group=operator,linetype=

operator))+theme(legend.position = "top", legend.direction = "

horizontal")

In the first plot, we have drawn lines connecting the mean values for each level of
the resin. We can see from this plot that particle sizes tend to be largest for the first
operator and smallest for the third. We see that the variance of the response is about
the same for each operator. This is convenient since equality of the variance is one
assumption of the linear model. We have annotated the plot to label the eight levels
so that they can be readily distinguished. Note that it is difficult to distinguish eight
different plotting symbols or lines so we have not attempted this. We can see that the
lines are approximately parallel which leads us to expect that there is little interaction
between the two plots.

In the second plot, there are eight levels of resin. For each level, we observe two
responses from each of the three operators. Since three levels are easier to distin-
guish, we have plotted these with a separate symbol. As with the first plot, lines join
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Figure 16.2 PVC data plotted by operators on the left and by resin railcars on the
right. Lines connect the average responses for the levels. The railcar number appears
to the left of each line on the first plot.

the averages for each level. We can see varying response by resin. The variances
within the levels seem approximately equal which is again reassuring. Furthermore,
the three lines are approximately parallel, suggesting little interaction.

The trouble with interaction plots is that we always expect there to be some ran-
dom variation so it is sometimes difficult to distinguish true interaction from just
noise. Fortunately, in this case, we have replication so we can directly test for an
interaction effect. We fit the full model and check the significance of the factors:

> lmod <- lm(psize ~ operator*resin, pvc)

> anova(lmod)

Analysis of Variance Table

Response: psize

Df Sum Sq Mean Sq F value Pr(>F)

operator 2 20.7 10.4 7.01 0.004

resin 7 283.9 40.6 27.44 5.7e-10

operator:resin 14 14.3 1.0 0.69 0.760

Residuals 24 35.5 1.5

We see that the interaction effect is not significant. This now allows a meaningful
investigation of the significance of the main effects. We see that both main effects
are significant.

Now one may be tempted to remove the interaction and then retest the main
effects:

> anova(lm(psize ~ operator + resin, pvc))

Analysis of Variance Table

Response: psize
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Df Sum Sq Mean Sq F value Pr(>F)

operator 2 20.7 10.4 7.9 0.0014

resin 7 283.9 40.6 30.9 8.1e-14

Residuals 38 49.8 1.3

One gets a somewhat different result although the conclusions are the same. The
difference lies in the σ̂2 used in the denominator of the F-tests (1.5 in the first table
and 1.3 in the second). The first version has been shown to achieve greater power
and is the preferred method.

We check the diagnostics, as seen in Figure 16.3:

> qqnorm(residuals(lmod),main="")

> qqline(residuals(lmod))

> plot(fitted(lmod),residuals(lmod),xlab="Fitted",ylab="Residuals")

> abline(h=0)

> plot(residuals(lmod) ~ operator, pvc, ylab="Residuals")
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Figure 16.3 Diagnostics plots for the full model for the PVC data.

The Q–Q plot suggests that the errors are somewhat long-tailed. We can see some
symmetry in the residuals vs. fitted plot. For each combination of the factors, the
mean of the two replicates is the fitted value. The two residuals for that pair will be
mirror images. A closer look at the more distant pairs reveals that they derive from
operator 3 as seen in the third panel of Figure 16.3.

Although the plot is fairly convincing, we can test for a difference in the variance.
For each pair of observations coming from a particular combination of operator and
resin, we compute the two residuals. One will be positive and the other negative due
to the symmetry previously noted. We take

√

|ε| as the new response. This measures
the spread in the pair with the square root transformation reducing the skewness in
the distribution. Note that we need only need one observation from each pair since
these are identical.

> pvce <- pvc[(1:24)*2,]

> pvce$res <- sqrt(abs(residuals(lmod))[(1:24)*2])

> vmod <- lm(res ~ operator + resin, pvce)

> anova(vmod)

Analysis of Variance Table
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Response: res

Df Sum Sq Mean Sq F value Pr(>F)

operator 2 1.490 0.745 15.12 0.00032

resin 7 0.638 0.091 1.85 0.15545

Residuals 14 0.690 0.049

This confirms a significant difference in variation for the operators. It also tells us
there is no strong evidence against constant variation among the resin cars.

This may be the most important finding from such an experiment because con-
sistency in manufacturing is very important. In many situations, one wishes to man-
ufacture an object to a specification. It is often possible to adjust the mean to the
desired level but a high variance will be detrimental to production quality.

Even so, let us examine the main effects, bearing in mind that we do not have
constant variance of the errors, making the comparisons less than optimal.

> lmod <- lm(psize ~ operator+resin, pvc)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.240 0.523 69.34 < 2e-16

operator2 -0.263 0.405 -0.65 0.52059

operator3 -1.506 0.405 -3.72 0.00064

resin2 -1.033 0.661 -1.56 0.12630

resin3 -5.800 0.661 -8.77 1.1e-10

resin4 -6.183 0.661 -9.35 2.1e-11

resin5 -4.800 0.661 -7.26 1.1e-08

resin6 -5.450 0.661 -8.24 5.5e-10

resin7 -2.917 0.661 -4.41 8.2e-05

resin8 -0.183 0.661 -0.28 0.78302

n = 48, p = 10, Residual SE = 1.145, R-Squared = 0.86

Suppose that we valued a small particle size. In this case, operator 3 produces the
best results overall. If we have a choice, we would also prefer resin car 4 for the
smallest particle size. However, sometimes we may not have control over a factor.
For example, the resin cars might be disposable and we cannot reliably produce one
to a particular specification. In such cases, there is no point in identifying which is
best in the experiment. Nevertheless, we would still include the factor in the model
because it would allow us to estimate the operator effects more precisely.

We can construct pairwise confidence intervals for the treatment factors using the
Tukey method:

> TukeyHSD(aov(psize ~ operator+resin,data=pvc))

Tukey multiple comparisons of means

95% family -wise confidence level

Fit: aov(formula = psize ~ operator + resin , data = pvc)

$operator

diff lwr upr p adj

2-1 -0.2625 -1.2497 0.72475 0.79436

3-1 -1.5063 -2.4935 -0.51900 0.00181

3-2 -1.2438 -2.2310 -0.25650 0.01068

$resin
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diff lwr upr p adj

2-1 -1.03333 -3.15228 1.08561 0.76833

3-1 -5.80000 -7.91895 -3.68105 0.00000

4-1 -6.18333 -8.30228 -4.06439 0.00000

etc

We see that operators 1 and 2 are not significantly different but operator 3 is different
from both. There are more significant differences among the resin cars although this
may not be of specific interest.

The analysis above is appropriate for the investigation of specific operators and
resin cars. These factors are being treated as fixed effects. If the operators and resin
cars were randomly selected from larger populations of those available, they should
be analyzed as random effects. This would require a somewhat different analysis not
covered here. However, we can at least see from the analysis above that the variation
between resin cars is greater than that between operators.

It is important that the observations taken in each cell are genuine replications.
If this is not true, then the observations will be correlated and the analysis will need
to be adjusted. It is a common scientific practice to repeat measurements and take
the average to reduce measurement errors. These repeat measurements are not inde-
pendent observations. Data where the replicates are correlated can be handled with
repeated measures models. For example, in this experiment we would need to take
some care to separate the two measurements for each operator and resin car. Some
knowledge of the engineering might be necessary to achieve this.

16.3 Two Factors with an Interaction

An industrial experiment examined the number of warp breaks in yarn depending on
two types of wool and three levels of tension used in a weaving machine. The data
may be found in Tukey (1977).

Simple plots of the data can be obtained from:

> plot(breaks ~ wool, warpbreaks)

> with(warpbreaks,interaction.plot(wool,tension,breaks))

The plots should be repeated, reversing the roles of the two predictors. More infor-
mative but harder-to-construct plots of the data are shown in Figure 16.4.

> require(ggplot2)

> ggplot(warpbreaks, aes(x=wool,y=breaks,shape=tension))+geom_point(

position = position_jitter(width = .1))+stat_summary(fun.y="mean

",geom="line",aes(group=tension,linetype=tension))+theme(legend.

position = "top", legend.direction = "horizontal")

> ggplot(warpbreaks, aes(x=tension,y=breaks,shape=wool))+geom_point(

position = position_jitter(width = .1))+stat_summary(fun.y="mean

",geom="line",aes(group=wool,linetype=wool))+theme(legend.

position = "top", legend.direction = "horizontal")

There is some evidence of non-constant variation. We can also see there may some
interaction between the factors as the lines joining the mean response at each level
are not close to parallel.

We can now fit a model with an interaction effect and check the diagnostics:
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Figure 16.4 Plots of the warpbreak data. Lines join the mean responses for levels
of the factor not plotted on the horizontal axis. Some horizontal jittering has been
added to distinguish tied cases.

> lmod <- lm(breaks ~ wool*tension, warpbreaks)

> plot(residuals(lmod) ~ fitted(lmod),xlab="Fitted",ylab="Residuals")

> abline(h=0)

The residuals vs. fitted plot shown in the first panel of Figure 16.5 reveals increasing
variation with the response. Given that the response is a counted variable, a square
root transformation is the suggested solution:

> lmod <- lm(sqrt(breaks) ~ wool*tension, warpbreaks)

> plot(residuals(lmod) ~ fitted(lmod),xlab="Fitted",ylab="Residuals")

> abline(h=0)

The diagnostic plot shown in the second panel of Figure 16.5 shows an improvement.
We can now test for the significance of the effects:

> anova(lmod)

Analysis of Variance Table

Response: sqrt(breaks)

Df Sum Sq Mean Sq F value Pr(>F)

wool 1 2.9 2.90 3.02 0.08854

tension 2 15.9 7.95 8.28 0.00082

wool:tension 2 7.2 3.60 3.75 0.03067

Residuals 48 46.1 0.96

We see that there is a significant interaction effect between the factors. This means
we cannot express the effect of the choice of wool independently of the setting of the
tension. We must interpret their effects together. One may also notice that the main
effect for wool is not significant but this does not mean that the choice of wool has
no effect. To make this point clearer, consider the regression output:
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Figure 16.5 Diagnostic plots for the warpbreaks data. The plot on the left comes
from the untransformed response while that on the right results from a square-rooted
response.

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.548 0.327 20.05 < 2e-16

woolB -1.309 0.462 -2.83 0.00669

tensionM -1.722 0.462 -3.73 0.00051

tensionH -1.691 0.462 -3.66 0.00062

woolB:tensionM 1.782 0.653 2.73 0.00887

woolB:tensionH 0.755 0.653 1.16 0.25335

n = 54, p = 6, Residual SE = 0.980, R-Squared = 0.36

In this output, we see that the main effect term for wool is significant. The reason for
the discrepancy is that the two tests of wool are different. The former test compares
the wool choice averaged over all levels of tension while the latter makes the compar-
ison at the reference level of tension (low in this case). So there is no simple answer
to the question of whether the choice of wool makes a difference to the response. In
the presence of a significant interaction, it is better not to consider main effects alone
but consider the effect of the two factors together.

The regression output above does not make it easy to interpret the nature of the
interaction. Sometimes it can be easier to think of the model has having just one
combined factor with a number of levels equal to the product of the two factor levels.
We can achieve this as follows:

> lmod <- lm(sqrt(breaks) ~ wool:tension-1, warpbreaks)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

woolA:tensionL 6.548 0.327 20.1 <2e-16

woolB:tensionL 5.238 0.327 16.0 <2e-16

woolA:tensionM 4.826 0.327 14.8 <2e-16
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woolB:tensionM 5.299 0.327 16.2 <2e-16

woolA:tensionH 4.856 0.327 14.9 <2e-16

woolB:tensionH 4.302 0.327 13.2 <2e-16

n = 54, p = 6, Residual SE = 0.980, R-Squared = 0.97

We can see that wool B at high tension produces the lowest expected number of
breaks. But is this choice significantly better than the others? We can answer this
question by computing the Tukey HSD intervals:

> TukeyHSD(aov(breaks ~ wool:tension, warpbreaks))

Tukey multiple comparisons of means

95% family -wise confidence level

Fit: aov(formula = breaks ~ wool:tension , data = warpbreaks)

$‘wool:tension ‘

diff lwr upr p adj

B:L-A:L -16.33333 -31.640 -1.02701 0.03021

A:M-A:L -20.55556 -35.862 -5.24923 0.00296

B:M-A:L -15.77778 -31.084 -0.47146 0.03982

A:H-A:L -20.00000 -35.306 -4.69368 0.00410

B:H-A:L -25.77778 -41.084 -10.47146 0.00011

A:M-B:L -4.22222 -19.529 11.08410 0.96265

B:M-B:L 0.55556 -14.751 15.86188 1.00000

A:H-B:L -3.66667 -18.973 11.63966 0.97971

B:H-B:L -9.44444 -24.751 5.86188 0.45609

B:M-A:M 4.77778 -10.529 20.08410 0.93772

A:H-A:M 0.55556 -14.751 15.86188 1.00000

B:H-A:M -5.22222 -20.529 10.08410 0.91148

A:H-B:M -4.22222 -19.529 11.08410 0.96265

B:H-B:M -10.00000 -25.306 5.30632 0.39188

B:H-A:H -5.77778 -21.084 9.52854 0.87056

We see that no pairwise difference involving medium or high tensions is significant.
So the advice should be to avoid running the machine at low tension if possible. If
we must make a choice, using wool B at high tension is most likely to be the best
choice. But if there are cost differences between A and B or difficulties in running
the machines at high tension, then we can see that other choices may be reasonable.

16.4 Larger Factorial Experiments

Suppose we have factors α,β,γ, . . . at levels lα, lβ, lγ, . . . . A full factorial experiment
has at least one run for each combination of the levels. The number of combinations
is lαlβlγ . . . , which could easily be very large. The biggest model for a full factorial
contains all possible interaction terms, which range from second-order, or two-way,
as encountered earlier in this chapter, to high order interactions involving several
factors. For this reason, full factorials are rarely executed for more than three or four
factors.

There are some advantages to factorial designs. If no interactions are significant,
we get several one-way experiments for the price of one. Compare this with doing
a sequence of one-way experiments. It is sometimes better to use replication for
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investigating another factor instead. For example, instead of doing a two-factor ex-
periment with replication, we might use that replication to investigate a third factor
but now with no replication.

The analysis of full factorial experiments is an extension of that used for the two-
way ANOVA. Typically, there is no replication due to cost concerns so it is necessary
to assume that some higher order interactions are zero in order to free up degrees of
freedom for testing the lower order effects. Not many phenomena require a precise
combination of several factors so this is not unreasonable.

Fractional factorials

Fractional factorials use only a fraction of the number of runs in a full factorial
experiment. This is done to save the cost of the full experiment or to make only a few
runs because the experimental material is limited. It is often possible to estimate the
lower order effects with just a fraction. Consider an experiment with seven factors,
each at two levels:

Effect mean main 2-way 3-way 4 5 6 7
Number of parameters 1 7 21 35 35 21 7 1

Table 16.1 Number of parameters in a two-level, seven-factor experiment.

If we are going to assume that higher order interactions are negligible then we
do not really need 27 = 128 runs to estimate the remaining parameters. We could
perform only eight runs and still be able to estimate the seven main effects, though
none of the interactions. In this particular example, it is hard to find a design to
estimate all the two-way interactions uniquely, without a large number of runs. The
construction of good designs is a complex task. For example, see Hamada and Wu
(2000) for more on this. A Latin square (see Section 17.2) where all predictors are
considered as factors is another example of a fractional factorial.

In fractional factorial experiments, we try to estimate many parameters with as
few data points as possible. This means there are often not many degrees of freedom
left. We require that σ2 be small; otherwise there will be little chance of distinguish-
ing significant effects. Fractional factorials are popular in engineering applications
where the experiment and materials can be tightly controlled. Fractional factorials
are commonly found in product design because they allow for the screening of a
large number of factors. Factors identified in a screening experiment can then be
more closely investigated. In the social sciences and medicine, the experimental ma-
terials, often human or animal, are much less homogeneous and less controllable, so
σ2 tends to be relatively large. In such cases, fractional factorials are of no value.

Here is an example. Speedometer cables can be noisy because of shrinkage in
the plastic casing material. An experiment was conducted to find out what caused
shrinkage by screening a large number of factors. The engineers started with 15
different factors: liner outside diameter, liner die, liner material, liner line speed, wire
braid type, braiding tension, wire diameter, liner tension, liner temperature, coating
material, coating die type, melt temperature, screen pack, cooling method and line
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speed, labeled a through o. Response is percentage of shrinkage per specimen. There
were two levels of each factor. The “+” indicates the high level of a factor and the
“−” indicates the low level.

A full factorial would take 215 runs, which is highly impractical, thus a design
with only 16 runs was used where the particular runs have been chosen specially so as
to estimate the mean and the 15 main effects. We assume that there is no interaction
effect of any kind. The data come from Box et al. (1988).

Here is the data:

> data(speedo, package="faraway")

> speedo

h d l b j f n a i e m c k g o y

1 - - + - + + - - + + - + - - + 0.4850

2 + - - - - + + - - + + + + - - 0.5750

3 - + - - + - + - + - + + - + - 0.0875

4 + + + - - - - - - - - + + + + 0.1750

5 - - + + - - + - + + - - + + - 0.1950

6 + - - + + - - - - + + - - + + 0.1450

7 - + - + - + - - + - + - + - + 0.2250

8 + + + + + + + - - - - - - - - 0.1750

9 - - + - + + - + - - + - + + - 0.1250

10 + - - - - + + + + - - - - + + 0.1200

11 - + - - + - + + - + - - + - + 0.4550

12 + + + - - - - + + + + - - - - 0.5350

13 - - + + - - + + - - + + - - + 0.1700

14 + - - + + - - + + - - + + - - 0.2750

15 - + - + - + - + - + - + - + - 0.3425

16 + + + + + + + + + + + + + + + 0.5825

Perhaps you can see the pattern in the design. We can fit and examine a main-effects-
only model:

> lmod <- lm(y ~ .,speedo)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.582500 NA NA NA

h- -0.062188 NA NA NA

d- -0.060938 NA NA NA

l- -0.027188 NA NA NA

b- 0.055937 NA NA NA

j- 0.000937 NA NA NA

f- -0.074062 NA NA NA

n- -0.006563 NA NA NA

a- -0.067813 NA NA NA

i- -0.042813 NA NA NA

e- -0.245312 NA NA NA

m- -0.027812 NA NA NA

c- -0.089687 NA NA NA

k- -0.068437 NA NA NA

g- 0.140312 NA NA NA

o- -0.005938 NA NA NA

n = 16, p = 16, Residual SE = NaN, R-Squared = 1

F-statistic: NaN on 15 and 0 DF, p-value: NA

There are no degrees of freedom, because there are as many parameters as cases. We
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cannot do any of the usual tests. It is important to understand the coding here, so
look at the X-matrix:

> model.matrix(lmod)

(Intercept) h d l b j f n a i e m c k g o

1 1 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

...etc...

We see that “+” is coded as zero and “−” is coded as one. This unnatural ordering is
because of the order of “+” and “−” in the ASCII alphabet.

We do not have any degrees of freedom so we can not make the usual F-tests. We
need a different method to determine significance. Suppose there were no significant
effects and the errors were normally distributed. The estimated effects would then
just be linear combinations of the errors and hence normal. We now make a nor-
mal quantile plot of the main effects with the idea that outliers represent significant
effects:

> qqnorm(coef(lmod)[-1],pch=names(coef(lmod)[-1]))
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Figure 16.6 Q–Q plots of effects for speedometer cable analysis.

See Figure 16.6. Notice that “e” and possibly “g” are extreme. Since the “e”
effect is negative, the “+” level of “e” increases the response. Since shrinkage is a
bad thing, increasing the response is not good so we would prefer whatever “wire
braid” type corresponds to the “−” level of “e”. The same reasoning for “g” leads us
to expect that a larger (assuming that is “+”) would decrease shrinkage.

A half-normal plot, as described in Section 6.2.1, is better for detecting extreme
points:

> halfnorm(coef(lmod)[-1],labs=names(coef(lmod)[-1]))

We might now conduct another experiment focusing on the effects of “e” and “g.”
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Exercises

1. Data on the butterfat content of milk from Canadian cows of five different breeds
and two different ages can be found in the butterfat dataset.

(a) Make appropriate plots of the data.

(b) Determine whether there is an interaction between breed and age.

(c) Determine whether there is a statistically significant difference between breeds
and also ages.

(d) Present regression diagnostics for your chosen model and comment whether
the assumptions have been met.

(e) Is the best breed in terms of butterfat content clearly superior to the second best
breed?

2. The barley data may be found in the lattice package. Perform a three-way
ANOVA with yield as the response. Check the diagnostics — you will find
that two points stick out, which correspond to the same variety and site, but for
different years. There is reason to suspect that the response values for these cases
have been transposed. Investigate the effect of transposing these cases on the
analysis.

3. Determine the important factors in the sono dataset where the Intensity is the
response and the other variables are predictors.

4. Using the rats data, model the survival time in terms of the poison and treat-
ment. Use the Box–Cox method to determine an appropriate transformation on
the response. Which treatments and which poisons are significantly different?

5. The peanut data come from a fractional factorial experiment to investigate factors
that affect an industrial process using carbon dioxide to extract oil from peanuts.
Determine which factors are important, remembering to consider two-way inter-
actions.

6. The “High School and Beyond” data is found in hsb.

(a) Model the math score in terms of the five factors: gender, race, ses, schtyp and
prog. Include all second-order interactions but no higher order interactions.
How many regression parameters does your model use? Explain how this can
be calculated in terms of the number of levels for each factor.

(b) Determine whether some two-way interactions can be eliminated using the
anova function.

(c) Determine whether some two-way interactions can be eliminated but now us-
ing the drop1 function. Why do the results differ from the previous question?
Which method of testing should be preferred?

(d) Fit a model with only main effects and compare it to the model with all two-
way interactions. Which model should be preferred?

(e) Determine which main effects are statistically significant and report on the
differences you find.

(f) Check the regression diagnostics for the main effects only model and report on
any anomalies.



Chapter 17

Experiments with Blocks

In a completely randomized design (CRD), the treatments are assigned to the exper-
imental units at random. This is appropriate when the units are homogeneous, as has
been assumed in the designs leading to the one- and two-way analyses of variances
(ANOVAs). Sometimes, we may suspect that the units are heterogeneous, but we
cannot describe the form the difference takes — for example, we may know that a
group of patients are not identical, but we may have no further information about
them. In this case, it is still appropriate to use a CRD. Of course, the randomization
will tend to spread the heterogeneity around to avoid systematic bias, but the real
justification lies in the randomization test discussed in Section 3.3. Under the null
hypothesis, there is no link between a factor and the response. In other words, the
responses have been assigned to the units in a way that is unlinked to the factor. This
corresponds to the randomization used in assigning the levels of the factor to the
units. This is why the randomization is crucial because it allows us to make this ar-
gument. Now if the difference in the response between levels of the factor seems too
unlikely to have occurred by chance, we can reject the null hypothesis. The normal-
based inference is approximately equivalent to the permutation-based test. Since the
normal-based inference is much quicker, we usually prefer to use that.

When the experimental units are heterogeneous in a known way and can be ar-
ranged into blocks where the within-block variation is small, but the between-block
variation is large, a block design can be more efficient than a CRD. We prefer to have
a block size equal to the number of treatments. If this cannot be done, an incomplete

block design must be used.

Sometimes the blocks are determined by the experimenter. For example, suppose
we want to compare four treatments and have 20 patients available. We might divide
the patients into five blocks of four patients each where the patients in each block
have some relevant similarity. We might decide this subjectively in the absence of
specific information. In other cases, the blocks are predetermined by the nature of
the experiment. For example, suppose we want to test three crop varieties on five
fields. Restrictions on planting, harvesting and irrigation equipment might allow us
only to divide the fields into three strips. The fields are the blocks.

In a randomized block design, the treatment levels are assigned randomly within
a block. This means the randomization is restricted relative to the full randomization
used in the CRD. This has consequences for the inference. There are fewer possible
permutations for the random assignment of the treatments; therefore, the computa-
tion of the significance of a statistic based on the permutation test would need to

251



252 EXPERIMENTS WITH BLOCKS

be modified. Consequently, a block effect must be included in the model used for
inference about the treatments, even if the block effect is not significant.

17.1 Randomized Block Design

We have one treatment factor, τ at t levels and one blocking factor, β at r levels. The
model is:

yi j = µ+ τi +β j + εi j

where τi is the treatment effect and ρ j is the blocking effect. There is one observa-
tion on each treatment in each block. This is called a randomized complete block
design (RCBD). The analysis is then very similar to a two-factor experiment with
no replication. We have a limited ability to detect an interaction between treatment
and block. We can check for a treatment effect. We can also check the block effect,
but this is only useful for future reference. Blocking is a feature of the experimental
units and restricts the randomized assignment of the treatments. This means that we
cannot regain the degrees of freedom devoted to blocking even if the blocking effect
is not significant.

We illustrate this with an experiment to compare eight varieties of oats. The
growing area was heterogeneous and so was grouped into five blocks. Each variety
was sown once within each block and the yield in grams per 16-ft row was recorded.
The data come from Anderson and Bancroft (1952).

We start with a look at the data:

> data(oatvar,package="faraway")

> xtabs(yield ~ variety + block, oatvar)

block

variety I II III IV V

1 296 357 340 331 348

2 402 390 431 340 320

3 437 334 426 320 296

4 303 319 310 260 242

5 469 405 442 487 394

6 345 342 358 300 308

7 324 339 357 352 220

8 488 374 401 338 320

Simple plots of the data can be obtained in base graphics by:

> plot(yield ~ variety, oatvar)

> plot(yield ~ block, oatvar)

> with(oatvar,interaction.plot(variety,block,yield))

> with(oatvar,interaction.plot(block,variety,yield))

Alternatively, we can use ggplot2:

> require(ggplot2)

> ggplot(oatvar,aes(x=variety,y=yield,group=block,linetype=block))+

geom_line()+theme(legend.position = "top", legend.direction = "

horizontal")

> ggplot(oatvar,aes(x=block,y=yield,group=block,linetype=block))+geom_

line()
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Figure 17.1 Interaction plots of oat variety data.

See Figure 17.1. There is no indication of outliers, skewness or non-constant vari-
ance. Nor is there any clear evidence of an interaction effect. We can move onto the
modeling:

> lmod <- lm(yield ~ block+variety, oatvar)

> anova(lmod)

Analysis of Variance Table

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

block 4 33396 8349 6.24 0.001

variety 7 77524 11075 8.28 1.8e-05

Residuals 28 37433 1337

Both effects are significant. The ANOVA table corresponds to a sequential testing of
models, here corresponding to the sequence:

y ~ 1

y ~ block

y ~ block+variety

So here the p-value 0.001 corresponds to a comparison of the first two models in this
list, while the p-value of 1.8e-05 corresponds to the test comparing the second two.
The denominator in both F-tests is the mean square from the full model, here 1337.
This means that a test of the block effect that leaves out the variety effect is not the
same:

> anova(lm(yield ~ block, oatvar))

Analysis of Variance Table

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)



254 EXPERIMENTS WITH BLOCKS

block 4 33396 8349 2.54 0.057

Residuals 35 114957 3284

There is a difference in significance in this case. This latter test is incorrect for testing
the blocking effect.

Notice that if we change the order of the terms in the ANOVA, it makes no
difference because of the orthogonal design:

> anova(lm(yield ~ variety+block, oatvar))

Analysis of Variance Table

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

variety 7 77524 11075 8.28 1.8e-05

block 4 33396 8349 6.24 0.001

Residuals 28 37433 1337

By way of comparison, see what happens if we omit the first observation in the
dataset — this might happen in practice if this run is lost:

> anova(lm(yield ~ block+variety,subset=-1, oatvar))

Analysis of Variance Table

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

block 4 38581 9645 8.41 0.00015

variety 7 75339 10763 9.38 7.3e-06

Residuals 27 30968 1147

> anova(lm(yield ~ variety+block,subset=-1, oatvar))

Analysis of Variance Table

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

variety 7 75902 10843 9.45 6.8e-06

block 4 38018 9504 8.29 0.00017

Residuals 27 30968 1147

As there is one missing observation, the design is no longer orthogonal and the order
does matter, although it would not change the general conclusions. If we want to
test for a treatment effect, we would prefer the first of these two tables since in that
version the blocking factor is already included when we test the treatment factor.
Since the blocking factor is an unalterable feature of the chosen design, this is as it
should be. A convenient way to test all terms relative to the full model is:

> drop1(lm(yield ~ variety+block,subset=-1, oatvar),test="F")

Single term deletions

Model:

yield ~ variety + block

Df Sum of Sq RSS AIC F value Pr(F)

<none > 30968 284

variety 7 75339 106307 319 9.38 7.3e-06

block 4 38018 68986 308 8.29 0.00017

Check the diagnostics, as seen in Figure 17.2:

> plot(lmod,which=1:2,caption=NULL)
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Figure 17.2 Diagnostic plots for the oat variety data.

An examination of which varieties give the highest yields and which are significantly
better than others can now follow.

We did assume that the interactions were not significant. We looked at the inter-
action plots, but we can also execute the Tukey non-additivity test:

> varcoefs <- c(0,coef(lmod)[6:12])

> blockcoefs <-c(0,coef(lmod)[2:5])

> ab <- rep(varcoefs,each=5)*rep(blockcoefs,8)

> h <- update(lmod,.~.+ab)

> anova(h)

Analysis of Variance Table

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

block 4 33396 8349 6.06 0.0013

variety 7 77524 11075 8.03 2.8e-05

ab 1 213 213 0.15 0.6974

Residuals 27 37220 1379

Because the p-value of the treatment times block effect is 0.6974, we accept the null
hypothesis of no interaction. Of course, the interaction may be of a non-multiplicative
form, but there is little we can do about that.

Relative advantage of RCBD over CRD
We can measure precision by considering var τ̂ or equivalently σ̂2. We should

compare the σ̂2 for designs with the same sample size. We define relative efficiency

as σ̂2
CRD/σ̂2

RCBD where the quantities can be computed by fitting models with and
without the blocking effect. For the example above:

> lmcrd <- lm(yield ~ variety, oatvar)

> summary(lmcrd)$sig

[1] 47.047
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> summary(lmod)$sig

[1] 36.564

> (47.047/36.564)^2

[1] 1.6556

So a CRD would require 66% more observations to obtain the same level of
precision as an RCBD.

The efficiency is not guaranteed to be greater than one. Only use blocking where
there is some heterogeneity in the experimental units. The decision to block is a
matter of judgment prior to the experiment. There is no guarantee that it will increase
precision.

17.2 Latin Squares

Latin squares can be useful when there are two blocking variables. For example, in
a field used for agricultural experiments, the level of moisture may vary across the
field in one direction and the fertility in another. In an industrial experiment, suppose
we wish to compare four production methods (the treatments) — A, B, C and D. We
have available four machines 1, 2, 3 and 4, and four operators, I, II, III and IV. An
example of a Latin square design is shown in Table 17.1.

1 2 3 4
I A B C D
II B D A C
III C A D B
IV D C B A

Table 17.1 A 4×4 Latin square showing the treatments (A to D) used for different
combinations of two factors.

Each treatment is assigned to each block once and only once. We should choose
randomly from all the possible Latin square layouts. The R package magic can be
used to generate such squares.

Let τ be the treatment factor and β and γ be the two blocking factors; then the
model is:

yi jk = µ+ τi +β j + γk + εi jk i, j,k = 1, . . . , t

All combinations of i, j and k do not appear. To test for a treatment effect, fit a model
without the treatment effect and compare using the F-test. The Tukey pairwise CIs
are:

τ̂l − τ̂m ±
qt,(t−1)(t−2)√

2
σ̂
√

2/t

The Latin square can be even more efficient than the RCBD provided that the
blocking effects are sizable. There are some variations on the Latin square. The
Latin square can be replicated if more runs are available. We need to have both
block sizes to be equal to the number of treatments. This may be difficult to achieve.
Latin rectangle designs are possible by adjoining Latin squares. When there are
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three blocking variables, a Graeco–Latin square may be used but these rarely arise in
practice.

The Latin square can also be used for comparing three treatment factors. Only
t2 runs are required compared to the t3 required if all combinations were run. (The
downside is that you cannot estimate the interactions if they exist.) This is an exam-
ple of a fractional factorial as discussed in Section 16.4.

In an experiment reported by Davies (1954), four materials, A, B, C and D, were
fed into a wear-testing machine. The response is the loss of weight in 0.1 mm over the
testing period. The machine could process four samples at a time and past experience
indicated that there were some differences due to the positions of these four samples.
Also some differences were suspected from run to run. Four runs were made. We
can display the layout of the data:

> data(abrasion,package="faraway")

> xtabs(wear ~ run + position, abrasion)

position

run 1 2 3 4

1 235 236 218 268

2 251 241 227 229

3 234 273 274 226

4 195 270 230 225

We can view the Latin square structure corresponding to this table:

> matrix(abrasion$material,4,4,byrow=TRUE)

[,1] [,2] [,3] [,4]

[1,] "C" "D" "B" "A"

[2,] "A" "B" "D" "C"

[3,] "D" "C" "A" "B"

[4,] "B" "A" "C" "D"

Plot the data:

> ggplot(abrasion,aes(x=run,y=wear,shape=position,group=material))+

geom_point()+geom_line(aes(linetype=material))

> ggplot(abrasion,aes(x=position,y=wear,shape=run,group=material))+

geom_point()+geom_line(aes(linetype=material))

Examine the plots in Figure 17.3. There appear to be differences in all variables.
No outliers, skewness or unequal variance are apparent. There is no obvious sign of
interaction.

Now fit the Latin square model and test each variable relative to the full model:

> lmod <- lm(wear ~ material+run+position, abrasion)

> drop1(lmod,test="F")

Single term deletions

Model:

wear ~ material + run + position

Df Sum of Sq RSS AIC F value Pr(>F)

<none > 368 70.1

material 3 4622 4989 105.9 25.15 0.00085

run 3 987 1354 85.0 5.37 0.03901

position 3 1468 1836 89.9 7.99 0.01617
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Figure 17.3 Amount of wear depending on material, run and position.

We see that all variables are statistically significant. There are clear differences be-
tween the materials. We checked the diagnostics on the model, which showed noth-
ing remarkable. We examine the coefficients:

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 254.75 6.19 41.17 1.4e-08

materialB -45.75 5.53 -8.27 0.00017

materialC -24.00 5.53 -4.34 0.00489

materialD -35.25 5.53 -6.37 0.00070

run2 -2.25 5.53 -0.41 0.69842

run3 12.50 5.53 2.26 0.06466

run4 -9.25 5.53 -1.67 0.14566

position2 26.25 5.53 4.74 0.00318

position3 8.50 5.53 1.54 0.17545

position4 8.25 5.53 1.49 0.18661

n = 16, p = 10, Residual SE = 7.826, R-Squared = 0.95

We see that material B looks best (in terms of least wear) followed by material
D. Is the difference significant though? Which materials in general are significantly
better than others? We need the Tukey pairwise intervals to help determine this. The
width of the band is calculated in the usual manner:

> qtukey(0.95,4,6)*5.53/sqrt(2)

[1] 19.143

The width of the interval is 19.1. We can make a table of the material differences:

> scoefs <- c(0,coef(lmod)[2:4])

> outer(scoefs,scoefs,"-")

materialB materialC materialD

0.00 45.75 24.00 35.25
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materialB -45.75 0.00 -21.75 -10.50

materialC -24.00 21.75 0.00 11.25

materialD -35.25 10.50 -11.25 0.00

We see that the (B, D) and (D, C) differences are not significant at the 5% level, but
that all the other differences are significant.

If maximizing resistance to wear is our aim, we would pick material B but if
material D offered a better price, we might have some cause to consider switching to
D. The decision would need to be made with cost–quality trade-offs in mind.

Now we compute how efficient the Latin square is compared to other designs.
We compare to the completely randomized design:

> lmodr <- lm(wear ~ material,abrasion)

> (summary(lmodr)$sig/summary(lmod)$sig)^2

[1] 3.8401

We see that the Latin square is 3.84 times more efficient than the CRD. This is a
substantial gain in efficiency. The Latin square may also be compared to designs
where we block only one of the variables. The efficiency relative to these designs is
less impressive, but still worthwhile.

17.3 Balanced Incomplete Block Design

In a complete block design, the block size is equal to the number of treatments. When
the block size is less than the number of treatments, an incomplete block design must
be used. For example, in the oat data, suppose six oat varieties were to be compared,
but each field had space for only four plots.

In an incomplete block design, the treatments and blocks are not orthogonal.
Some treatment contrasts will not be identifiable from certain block contrasts. This
is an example of confounding. This means that those treatment contrasts effectively
cannot be examined. In a balanced incomplete block (BIB) design, all the pairwise
differences are identifiable and have the same standard error. Pairwise differences
are more likely to be interesting than other contrasts, so the design is constructed to
facilitate this.

Suppose, we have four treatments (t = 4) designated A, B, C, D and the block
size, k = 3 and there are b = 4 blocks. Therefore, each treatment appears r = 3 times
in the design. One possible BIB design is:

Block 1 A B C
Block 2 A B D
Block 3 A C D
Block 4 B C D

Table 17.2 BIB design for four treatments with four blocks of size three.

Each pair of treatments appears in the same block λ = 2 times — this feature
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means simpler pairwise comparison is possible. For a BIB design, we require:

b ≥ t > k

rt = bk = n

λ(t −1) = r(k−1)

This last relation holds because the number of pairs in a block is k(k− 1)/2 so
the total number of pairs must be bk(k − 1)/2. On the other hand, the number of
treatment pairs is t(t −1)/2. The ratio of these two quantities must be λ.

Since λ has to be an integer, a BIB design is not always possible even when the
first two conditions are satisfied. For example, consider r = 4, t = 3,b = 6,k = 2 and
then λ = 2 which is OK, but if r = 4, t = 4,b = 8,k = 2, then λ = 4/3 so no BIB is
possible. (Something called a partially balanced incomplete block design can then
be used.) BIBs are also useful for competitions where not all contestants can fit in
the same race.

The model we fit is the same as for the RCBD:

yi j = µ+ τi +β j + εi j

In our example, a nutritionist studied the effects of six diets, “a” through “f,” on
weight gains of domestic rabbits. From past experience with sizes of litters, it was
felt that only three uniform rabbits could be selected from each available litter. There
were ten litters available forming blocks of size three. The data come from Lentner
and Bishop (1986). Examine the data:

> data(rabbit,package="faraway")

> xtabs(gain ~ treat+block, rabbit)

block

treat b1 b10 b2 b3 b4 b5 b6 b7 b8 b9

a 0.0 37.3 40.1 0.0 44.9 0.0 0.0 45.2 44.0 0.0

b 32.6 0.0 38.1 0.0 0.0 0.0 37.3 40.6 0.0 30.6

c 35.2 0.0 40.9 34.6 43.9 40.9 0.0 0.0 0.0 0.0

d 0.0 42.3 0.0 37.5 0.0 37.3 0.0 37.9 0.0 27.5

e 0.0 0.0 0.0 0.0 40.8 32.0 40.5 0.0 38.5 20.6

f 42.2 41.7 0.0 34.3 0.0 0.0 42.8 0.0 51.9 0.0

The zero values correspond to no observation. The BIB structure is apparent — each
pair of diets appears in the same block exactly twice. Now plot the data, as seen in
Figure 17.4. In the first plot, we can distinguish the six levels of treatment with a
different plotting character. In the second plot, it is difficult to distinguish the ten
levels of block with different shapes so we have used a simple dot. Some jittering is
necessary to distinguish the points. There is nothing remarkable about the content of
the plots as we see no evidence of outliers, skewness or non-constant variance.

> ggplot(rabbit,aes(y=gain,x=block,shape=treat))+geom_point()+theme(

legend.position = "top", legend.direction = "horizontal")

> ggplot(rabbit,aes(y=gain,x=treat))+geom_point(position = position_

jitter(width = .1))

We fit the model and test the significance of the effects:
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Figure 17.4 Strip plots of rabbit diet data.

> lmod <- lm(gain ~ block+treat,rabbit)

> drop1(lmod, test="F")

Single term deletions

Model:

gain ~ block + treat

Df Sum of Sq RSS AIC F value Pr(>F)

<none > 151 78.4

block 9 596 747 108.4 6.59 0.00076

treat 5 159 309 90.0 3.16 0.03817

It is best to use the drop1 function in preference to anova. This is because the order
of the terms in the model makes a difference because the design is not orthogonal
(because of the incompleteness). To test either term, we need the other term to be
present in the model.

Now check the diagnostics:

> plot(lmod, which=1:2)

The plots are not shown, as they show nothing of interest.
Now we check which treatments differ. The Tukey pairwise CIs need to be di-

rectly constructed because this is not a complete layout. We extract the information
about the treatment effects and the standard error:

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.0139 2.5886 13.91 5.6e-10

blockb10 3.2972 2.7960 1.18 0.2567

blockb2 4.1333 2.6943 1.53 0.1458

blockb3 -1.8028 2.6943 -0.67 0.5136

blockb4 8.7944 2.7960 3.15 0.0067

blockb5 2.3056 2.7960 0.82 0.4225
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blockb6 5.4083 2.6943 2.01 0.0631

blockb7 5.7778 2.7960 2.07 0.0565

blockb8 9.4278 2.7960 3.37 0.0042

blockb9 -7.4806 2.7960 -2.68 0.0173

treatb -1.7417 2.2418 -0.78 0.4493

treatc 0.4000 2.2418 0.18 0.8608

treatd 0.0667 2.2418 0.03 0.9767

treate -5.2250 2.2418 -2.33 0.0341

treatf 3.3000 2.2418 1.47 0.1617

n = 30, p = 15, Residual SE = 3.170, R-Squared = 0.86

We see that the standard error for the pairwise comparison of treatments is 2.24. No-
tice that all the treatment standard errors are equal because of the BIB. Now compute
the Tukey critical value:

> qtukey(0.95,6,15)

[1] 4.5947

So the intervals have width:

> 4.59*2.24/sqrt(2)

[1] 7.2702

We check which pairs are significantly different:

> tcoefs <- c(0,coef(lmod)[11:15])

> abs(outer(tcoefs,tcoefs,"-")) > 7.27

treatb treatc treatd treate treatf

FALSE FALSE FALSE FALSE FALSE FALSE

treatb FALSE FALSE FALSE FALSE FALSE FALSE

treatc FALSE FALSE FALSE FALSE FALSE FALSE

treatd FALSE FALSE FALSE FALSE FALSE FALSE

treate FALSE FALSE FALSE FALSE FALSE TRUE

treatf FALSE FALSE FALSE FALSE TRUE FALSE

Only the e− f difference is significant.
Now let’s see how much better this blocked design is than the CRD. We compute

the relative efficiency:

> lmodt <- lm(gain ~ treat,rabbit)

> (summary(lmodt)$sig/summary(lmod)$sig)^2

[1] 3.0945

Blocking was well worthwhile here.

Exercises

1. The alfalfa data arise from a Latin square design where the treatment factor
is inoculum and the blocking factors are shade and irrigation. Test the sig-
nificance of the effects and determine which levels of the treatment factor are
significantly different.

2. The eggprod comes from a randomized block experiment to determine factors
affecting egg production. Is there a difference in the treatments? What is the
nature of the difference? What efficiency was gained by the blocked design?
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3. The morley data can be viewed as a randomized block experiment with Run as
the treatment factor and Expt as the blocking factor. Is there a difference between
runs and what efficiency is gained by blocking?

4. The OrchardSprays data arise from a Latin square design. Which factors show
a difference? What pairs of treatments are different? Can the treatment factor be
replaced with a linear term? What efficiency is gained by this design?

5. The resceram data arise from an experiment to test the effects of resistor shape
on current noise. The resistors are mounted on plates and only three resistors will
fit on a plate although there are four different shapes to be tested. Identify the
design and analyze. Which shapes are different?

6. The penicillin data derive from the production of penicillin which uses a raw
material, corn steep liquor, that is quite variable and can only be made in blends
sufficient for four runs. There are four processes, A, B, C and D, for the produc-
tion.

(a) Make suitable plots of the data.

(b) Check for a significant difference between the treatments.

(c) Is there a difference between the blends? Explain how using blends in the
design and modeling improved the outcome.

(d) Check the model diagnostics for any problems with the assumptions.

7. Use the penicillin data from the previous question. Test for the signficance of
the treatment effect using a permutation test. Some hints:

(a) You will need to restrict the randomization of the permutation to within the
blocks.

(b) Constructing such a random permuation is possible with repeated use of sample(4).

(c) Examine the output of the anova function using names to learn how to extract
the relevant F-statistic.

8. Is the standard Sudoku solution a Latin square? Does the Sudoku solution con-
tain any additional features that might be useful for design purposes? Propose a
situation where it could be helpful.



Appendix A

About R

Installation
R may be obtained free of charge from the R project web site at www.r-project.org.
How to learn R

The R website provides extensive resources for learning R. Several free introduc-
tory guides can be found along with a list of the many books about R which are now
available. I have assumed a basic knowledge of R for readers of this text but it is not
necessary to learn it in detail before starting on this book. Many readers are able to
pick up the language from the examples in the text with reference to the help pages.
For example, for more information on the lm function, type within R:

> help(lm)

More advanced users may find the R mailing lists and online forums such as Stack-
Exchange helpful for more difficult questions.

Packages
This book uses some functions and data that are not part of base R. These are col-

lected in packages which you may need to install. You can find out which packages
are already installed in your library by:

> library()

Some packages such as MASS, mgcv, nlme and splines come with the base installa-
tion so you will not need to install them. If you have not already done so, you will
need to select a location from which to download additional packages by setting your
CRAN (Comprehensive R Archive Network) mirror by:

> chooseCRANmirror()

You can then install packages. You will surely need to install the faraway package
which contains data and functions specfic to this text:

> install.packages("faraway")

You may also wish install the other packages used in this text which are: Amelia,
ellipse, ggplot2, lars, leaps, lmtest, Matching, pls, quantreg, simex. All
these packages are used infrequently (except for ggplot2), so you might delay in-
stallation until you need them. Note that you only need to install packages once
on a given computer unless you upgrade the version of R. The standard GUIs for
Windows and Mac provide menu-based methods for package installation and main-
tenance which you may find more convenient.

Any time you want to use these particular data or functions, you will need to load
the package. For example,
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> require(faraway)

makes the data from this text available. If you get an error message about some data
or functions not being found, it’s quite possible that you have forgotten to load the
necessary package.

Customization
There are several ways to customize the look of R. I set the following options to

achieve the output seen in this book:

options(width=70,digits=5,scipen=2)

The width=70 controls the width of the printed output. You may wish to increase
this, depending on your screen or the width of your page. The digits=5 reduces the
number of digits shown when printing numbers from the default of seven. Note that
this does not reduce the precision with which these numbers are internally stored.
One might take this further — anything more than two or three significant digits in a
displayed table is usually unnecessary and more importantly, distracting. scipen=2
penalizes the use of scientific notation in reporting numbers. This notation has its
uses but can make it harder to appreciate the size of a number.

I have also edited the output in the text to remove extraneous output or to improve
the formatting.

Updates and Errata
The code and output shown in this book were generated under R version 3.0.2.

R is regularly updated and improved so more recent versions may show some differ-
ences in the output. Sometimes these changes can break the code in the text. This is
more likely to occur in the additional packages. Please refer to the book website at
http://people.bath.ac.uk/jjf23/LMR/ for information about such changes or
errors found in the text.

Interfaces
The R website provides a GUI for both Mac and Windows installations. More

functionality can be found elsewhere in ESS (which runs within the Emacs environ-
ment) and RStudio. Advanced users of R often find it more convenient to prepare R

commands in a separate script before running these in R. Customizations to write R

for many popular text editing programs are available.
Reproducible research
It is important that you be able to reproduce your analysis in the future if needed.

Sometimes, other people will need to verify your findings or, more likely, you your-
self will need to modify or update your analysis. At a minimum you should maintain
a commented set of R commands that will reproduce your analysis.

Sometimes you will want produce a document that includes the R commands,
text describing the analysis and the output including graphs. This might look some-
thing like the text of this book. The Sweave tool allows you to embed R within
a LATEXdocument. Alternatively, the knitr package also provides this along with
ability to use formats compatible with Microsoft Word and HTML for web display.
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