{ "cells": [ { "cell_type": "markdown", "id": "f8b5ea04", "metadata": {}, "source": [ "# Práctica 0 (tutorial) de Cálculo Avanzado 2023-24" ] }, { "cell_type": "code", "execution_count": 7, "id": "a2c53fce", "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrrrrrrrr}\n", "-1 & 2 & 14 & -4 & -5 & 4 & -6 & -4 & 1 \\\\\n", "-7 & 7 & 13 & 10 & -1 & 6 & -10 & -3 & 4 \\\\\n", "5 & 11 & -11 & -10 & -12 & 7 & -10 & 11 & 9 \\\\\n", "11 & -7 & 11 & -11 & 12 & 4 & -8 & -10 & 10\n", "\\end{array}\\right)$$" ], "text/plain": [ "[ -1 2 14 -4 -5 4 -6 -4 1]\n", "[ -7 7 13 10 -1 6 -10 -3 4]\n", "[ 5 11 -11 -10 -12 7 -10 11 9]\n", "[ 11 -7 11 -11 12 4 -8 -10 10]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "A=random_matrix(ZZ, 4,9,x=-12, y=15); show(A)" ] }, { "cell_type": "code", "execution_count": 9, "id": "f8844d54", "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrrrrr}\n", "0 & 0 & 0 & 0 & 0 & 0 \\\\\n", "0 & 0 & 0 & 0 & 0 & 0 \\\\\n", "0 & 0 & 0 & 0 & 0 & 0 \\\\\n", "0 & 0 & 0 & 0 & 0 & 0\n", "\\end{array}\\right)$$" ], "text/plain": [ "[0 0 0 0 0 0]\n", "[0 0 0 0 0 0]\n", "[0 0 0 0 0 0]\n", "[0 0 0 0 0 0]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "AA=zero_matrix(4,6);show(AA)" ] }, { "cell_type": "code", "execution_count": 10, "id": "3110a005", "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrrr}\n", "1 & 1 & 1 & 1 \\\\\n", "1 & 1 & 1 & 1 \\\\\n", "1 & 1 & 1 & 1\n", "\\end{array}\\right)$$" ], "text/plain": [ "[1 1 1 1]\n", "[1 1 1 1]\n", "[1 1 1 1]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "AAA=ones_matrix(3,4);show(AAA)" ] }, { "cell_type": "markdown", "id": "f8eb8ab9", "metadata": {}, "source": [ "Esta práctica tiene como objetivo que te familiarices (o repases) el trabajo con hojas de Sage. Si has trabajado con otras versiones de Sage, todo te resultará muy parecido.\n", "\n", "Los ejercicios de la práctica están marcados en color, pero puedes probar a modificar todo en la hoja para experimentar. Eso sí, en la hoja que vayas a entregar no hagas modificaciones aparte de lo que pidan los ejercicios." ] }, { "cell_type": "markdown", "id": "7c1cae0e", "metadata": {}, "source": [ "## Usando la interfaz" ] }, { "cell_type": "markdown", "id": "db372de3", "metadata": {}, "source": [ "Las órdenes se dan a Sage a través de celdas (como el recuadro que hay debajo de este párrafo) donde se escribe el texto a ejecutar. Se ejecuta el contenido de una celda metiéndose en ella (saldrá un recuadro verde alrededor) y pulsando `〈shift〉+〈intro〉` o lo equivalente en tu dispositivo." ] }, { "cell_type": "markdown", "id": "9f8b1bde", "metadata": {}, "source": [ "
\n", " Ejercicio 1. \n", " Ejecuta la celda siguiente. Luego cambia el número dentro del comando y ejecútala otra vez.\n", "
" ] }, { "cell_type": "code", "execution_count": 2, "id": "f3b0e36d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3 * 5 * 823" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "factor(12345)" ] }, { "cell_type": "markdown", "id": "4d1b38ab", "metadata": {}, "source": [ "Sage solo muestra el último resultado calculado en la celda. En el ejemplo siguiente se calculan varias cosas pero no se muestran todas, aunque se calculen." ] }, { "cell_type": "code", "execution_count": 3, "id": "7e3e261e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "10" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "3+3\n", "4+4\n", "5+5" ] }, { "cell_type": "markdown", "id": "b6d146c9", "metadata": {}, "source": [ "Si alguna vez quieres usar un comando pero no recuerdas bien su nombre, escribe las primeras letras y pulsa `Tabulador` o equivalente: Sage te lo completará, o bien te dará una lista si hay varias formas de completarlo.\n", "\n", "Por ejemplo, si queremos factorizar otro número pero no tenemos la línea de arriba para copiarla y pegar, podríamos escribir `fac` y completarlo. Prueba en esta celda vacía." ] }, { "cell_type": "code", "execution_count": null, "id": "155aa5e6", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "21f20492", "metadata": {}, "source": [ "Puedes crear celdas con el `+` que aparece en la barra de arriba. También puedes reordenar celdas, borrar y fusionarlas, etc.\n", "\n", "Hay dos tipos de celdas, de cálculo y de texto. Puedes usar las de texto para añadir explicaciones de los cálculos. Se puede decorar el texto, añadir fórmulas matemáticas, etc. Puedes hacer clic doble en cualquier texto para ver el código que lo genera.\n", "\n", "* Las celdas de código tienen a la izquierda un marcador `In` con corchetes, y arriba hay un selector que dirá \"Code\".\n", "* Las celdas de texto no tienen marcador a la izquierda, y en el selector pone \"Markdown\"." ] }, { "cell_type": "markdown", "id": "20f2311e", "metadata": {}, "source": [ "
\n", " Ejercicio 2. \n", " Crea exactamente dos celdas entre los dos textos que están debajo. La primera debe ser de código y la segunda de texto. En la primera calcula algo y en la segunda coméntalo.\n", "
" ] }, { "cell_type": "markdown", "id": "d03728b4", "metadata": {}, "source": [ "Texto 1..." ] }, { "cell_type": "markdown", "id": "b3010a9e", "metadata": {}, "source": [ "Texto 2..." ] }, { "cell_type": "markdown", "id": "c8f4882b", "metadata": {}, "source": [ "Finalmente, puedes pedirle a Sage información de uso de cada comando (en inglés). Si ejecutas la celda siguiente verás una descripción del comando: su sintaxis (qué poner entre paréntesis) y qué hace, con algún ejemplo." ] }, { "cell_type": "code", "execution_count": 4, "id": "9b755b83", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/usr/lib/python3/dist-packages/pytz/__init__.py:31: DeprecationWarning: invalid escape sequence '\\s'\n", " match = re.match(\"^#\\s*version\\s*([0-9a-z]*)\\s*$\", line)\n" ] } ], "source": [ "factor?" ] }, { "cell_type": "markdown", "id": "df39e70d", "metadata": {}, "source": [ "## Calcular" ] }, { "cell_type": "markdown", "id": "1e9c43e6", "metadata": {}, "source": [ "Podemos utilizar Sage como cualquier (potente) calculadora científica." ] }, { "cell_type": "code", "execution_count": 5, "id": "a2bb2ddc", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "-10" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "5-5*3" ] }, { "cell_type": "code", "execution_count": 6, "id": "9d427d62", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.138073472874840" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "32.323/234.1" ] }, { "cell_type": "code", "execution_count": 7, "id": "71ec88e3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "10715086071862673209484250490600018105614048117055336074437503883703510511249361224931983788156958581275946729175531468251871452856923140435984577574698574803934567774824230985421074605062371141877954182153046474983581941267398767559165543946077062914571196477686542167660429831652624386837205668069376" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "2^1000" ] }, { "cell_type": "code", "execution_count": 8, "id": "2eb76d59", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "244.691932264220" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "exp(5.5)" ] }, { "cell_type": "markdown", "id": "47a8bb3b", "metadata": {}, "source": [ "Sage trata de trabajar siempre sin redondeos. Ejecuta las celdas siguientes para verlo." ] }, { "cell_type": "code", "execution_count": 9, "id": "ddc31eb3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "5/6" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "1/2+1/3" ] }, { "cell_type": "code", "execution_count": 10, "id": "1ba52030", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1/2*sqrt(2)" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sin(pi/4)" ] }, { "cell_type": "code", "execution_count": 11, "id": "6c5af617", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "94143178827/70368744177664" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "(3/4)^23" ] }, { "cell_type": "code", "execution_count": 12, "id": "56b619ee", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "pi + 2" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "2+pi" ] }, { "cell_type": "code", "execution_count": 13, "id": "98995dd6", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "e^3" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "e^3" ] }, { "cell_type": "markdown", "id": "1f46c47d", "metadata": {}, "source": [ "Para forzar a Sage a trabajar numéricamente (aproximando), aplicamos`.n()` tras el número deseado (fíjate en que hay que añadir un punto). Si quieres hacere esto a un cálculo complejo deberás ponerlo todo entre paréntesis y aproximar ese paréntesis. Una vez que se ha redondeado, los cálculos que usen ese resultado también serán aproximados." ] }, { "cell_type": "code", "execution_count": 14, "id": "71605390", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "20.0855369231877" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "(e^3).n()" ] }, { "cell_type": "markdown", "id": "560f94e2", "metadata": {}, "source": [ "
\n", " Ejercicio 3. \n", " Calcula el seno de 90 de manera exacta (quizás no salga lo que esperas). Después calcúlalo aproximadamente. También calcula numéricamente el valor de $\\frac{1-2^2}{1-2^2+2^3}$, que es -3/5 (al aproximar no te saldrá una fracción, claro).\n", "
" ] }, { "cell_type": "markdown", "id": "77f7d754", "metadata": {}, "source": [ "## Tipos de datos y variables" ] }, { "cell_type": "markdown", "id": "4b13066e", "metadata": {}, "source": [ "Para utilizar posteriormente el resultado de un cálculo, debemos guardarlo en una variable. Al hacerlo Sage no nos mostrará el resultado, porque lo que le pedimos no es enseñar el resultado sino guardarlo. Ejecuta la celda siguiente." ] }, { "cell_type": "code", "execution_count": 15, "id": "4e95b8a5", "metadata": {}, "outputs": [], "source": [ "b = 2.0^4+1.0/5+exp(3.0)" ] }, { "cell_type": "markdown", "id": "47872321", "metadata": {}, "source": [ "Para ver el contenido de la variable, basta escribir su nombre y ejecutar la celda." ] }, { "cell_type": "code", "execution_count": 16, "id": "dbb6125d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "36.2855369231877" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "b" ] }, { "cell_type": "markdown", "id": "525e3d35", "metadata": {}, "source": [ "
\n", " Importante:\n", " aunque tengamos la definición de una variable escrita en la hoja, Sage no conocerá el valor hasta que la ejecutemos.\n", "
\n", "\n", "Por ejemplo, de las dos celdas siguientes sáltate la primera y ejecuta solo la segunda: nos dará un error. Aprovecha para leer el contenido del error, a ver si te da información sobre el problema que ha habido.\n", "\n", "Si ahora ejecutas la primera y la segunda celda en ese orden, todo funcionará como seguramente queríamos." ] }, { "cell_type": "code", "execution_count": 17, "id": "bcdbfc8c", "metadata": {}, "outputs": [], "source": [ "valor = 3" ] }, { "cell_type": "code", "execution_count": 18, "id": "d3e64ae4", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "valor" ] }, { "cell_type": "markdown", "id": "dfce2d3b", "metadata": {}, "source": [ "
\n", " Moraleja 1: \n", " solo porque algo esté escrito en una celda no significa que Sage lo haya \"asimilado\".\n", "
\n", "\n", "
\n", " Moraleja 2: \n", " si ejecutas el código Sage en orden te evitarás problemas.\n", "
\n", "\n", "
\n", " Moraleja 3: \n", " cuando estés haciendo varios ejercicios en una hoja, muchos problemas se resuelven preguntándose ¿la variable que estoy usando ahora tenía algún valor en otr parte de la hoja?\n", "
" ] }, { "cell_type": "markdown", "id": "f3b1926f", "metadata": {}, "source": [ "Si el resultado no es un número en coma flotante, Sage lo guarda de manera exacta, por lo que tendremos que utilizar `.n()` para ver su valor aproximado si eso es lo que queremos.\n", "\n", "Por eso, casi siempre es mejor guardar valores exactos; si guardamos uno aproximado todos los cálculos que hagamos con él irán acumulando cada vez más error." ] }, { "cell_type": "code", "execution_count": 19, "id": "a9aba25b", "metadata": {}, "outputs": [], "source": [ "c = 2^4+1/5+exp(3)" ] }, { "cell_type": "code", "execution_count": 20, "id": "00926ae0", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "e^3 + 81/5" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "c" ] }, { "cell_type": "code", "execution_count": 21, "id": "c1a65dba", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "36.2855369231877" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "c.n()" ] }, { "cell_type": "markdown", "id": "26cc06bc", "metadata": {}, "source": [ "Si asignamos un nuevo contenido a una variable, perdemos su valor anterior." ] }, { "cell_type": "code", "execution_count": 22, "id": "79a97d76", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.100000000000000" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "d = 0.1\n", "d" ] }, { "cell_type": "code", "execution_count": 23, "id": "c78bbf6e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.200000000000000" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "d = 0.2\n", "d" ] }, { "cell_type": "markdown", "id": "a0811e27", "metadata": {}, "source": [ "Podemos hacer las dos cosas a la vez: utilizar su valor y guardarlo de nuevo con el mismo nombre. Asegúrate de entender lo que hace la celda siguiente." ] }, { "cell_type": "code", "execution_count": 24, "id": "6869b573", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.0400000000000000" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "d = d^2\n", "d" ] }, { "cell_type": "markdown", "id": "9a990956", "metadata": {}, "source": [ "Ahora practicaremos la ejecución desordenada de celdas." ] }, { "cell_type": "markdown", "id": "7f907fad", "metadata": {}, "source": [ "
\n", " Ejercicio 4. \n", " Crea una variable llamada n con el valor 1. En otra celda, calcula n+1 y asígnalo de nuevo a n. Ejecuta esa segunda celda varias veces para \"ir contando\". Muestra el valor final de n en una tercera celda. Si lo\n", "haces bien, quien vea tus cálculos pensará que pasa algo muy raro con Sage.\n", "
" ] }, { "cell_type": "markdown", "id": "2b3585e4", "metadata": {}, "source": [ "Sage también puede guardar otros objetos dentro de variables. Por ejemplo, A continuación unos vectores y matrices." ] }, { "cell_type": "code", "execution_count": 25, "id": "6a5c305d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(1, -1, 1, 1)" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "v = vector([1,-1,1,1])\n", "v" ] }, { "cell_type": "code", "execution_count": 26, "id": "53a40e46", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[ 1 12 123 1234]\n", "[ 2 23 234 2341]\n", "[ 3 34 341 3412]\n", "[ 4 41 412 4123]" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A = matrix([[1, 12, 123, 1234],[2, 23, 234, 2341],[3, 34, 341,3412], [4, 41, 412, 4123]])\n", "A" ] }, { "cell_type": "code", "execution_count": 27, "id": "7deb903b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(6, 64, 642, 6428)" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "v*A" ] }, { "cell_type": "code", "execution_count": 28, "id": "608f270f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[ 107374079616 1109314991136 11146396525392 111543829145296]\n", "[ 203754228536 2105048267056 21151524028056 211666790874832]\n", "[ 296991258912 3068309008336 30830367517456 308524574647936]\n", "[ 358880194936 3707702843072 37254996477496 372816896691936]" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A^4" ] }, { "cell_type": "code", "execution_count": 29, "id": "7b65a323", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "160" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "det(A)" ] }, { "cell_type": "markdown", "id": "016f196d", "metadata": {}, "source": [ "## Funciones matemáticas" ] }, { "cell_type": "markdown", "id": "c750fb90", "metadata": {}, "source": [ "Podemos definir una función como lo haríamos en clase. Al ponerle `(x)` después del nombre de variable, Sage entiende que podremos evaluarla, y nos lo indica si le preguntamos por la variable." ] }, { "cell_type": "code", "execution_count": 30, "id": "3929eadf", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "x |--> x^3 + x^2 + 3" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "f(x) = x^3+x^2+3\n", "f" ] }, { "cell_type": "markdown", "id": "641dd468", "metadata": {}, "source": [ "Para evaluar la función en un punto, basta sustituir el valor donde pusimos la variable." ] }, { "cell_type": "code", "execution_count": 31, "id": "60409f7f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "39.6640080000000" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "f(3.02)" ] }, { "cell_type": "code", "execution_count": 32, "id": "2d5670c3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "pi^3 + pi^2 + 3" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "f(pi)" ] }, { "cell_type": "markdown", "id": "2f3f44a2", "metadata": {}, "source": [ "Podemos por ejemplo calcular la derivada, integral, etc. de la función, que también son funciones (evaluables). Esta vez lo hacemos con una sintaxis nueva: en vez de poner un comando de Sage y nuestro objeto entre paréntesis, ponemos ese objeto, un punto, y después la operación (siempre con paréntesis). Muchos cálculos básicos se pueden hacer con las dos sintaxis que hemos visto en esta práctica.\n", "\n", "Por cierto, en la segunda celda a continuación derivamos y evaluamos a la vez, fíjate que cada par de paréntesis vale para una cosa distinta." ] }, { "cell_type": "code", "execution_count": 33, "id": "eb625919", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "x |--> 3*x^2 + 2*x" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "f.diff(x)" ] }, { "cell_type": "code", "execution_count": 34, "id": "aa1a7802", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "5" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "f.diff(x)(1)" ] }, { "cell_type": "code", "execution_count": 35, "id": "5cdd3c6c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "x |--> e^(x^3 + x^2 + 3)" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "f.exp()" ] }, { "cell_type": "markdown", "id": "eabf811b", "metadata": {}, "source": [ "Para ver todas las operaciones que podemos hacer con una variable, podemos escribir su nombre seguido de un punto y pulsar `Tabulador`. Pruébalo a continuación con la función que hemos definido, deberías ver una (larga) lista Asegúrate antes de haber ejecutado la celda de arriba donde se guarda la función en la variable. También puedes escribir las primeras letras y autocompletar, como hicimos al principio de la práctica." ] }, { "cell_type": "code", "execution_count": null, "id": "fa1da07c", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "acaf20fd", "metadata": {}, "source": [ "Finalmente, hay otra manera de trabajar con funciones y sus variables. En vez de definir la variable con un paréntesis al lado de la función, definimos la variable por separado con `var`. Para evaluar necesitaremos decirle a Sage qué estamos sustituyendo, como en el ejemplo siguiente. Aunque parezca más complicado o más feo, a veces es mucho más conveniente hacerlo así. Posiblemente nos encontraremos situaciones así a lo largo del curso." ] }, { "cell_type": "code", "execution_count": 36, "id": "65e48b31", "metadata": {}, "outputs": [], "source": [ "var('y')\n", "g = y+1" ] }, { "cell_type": "code", "execution_count": 37, "id": "355c0fcc", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g(y=2)" ] }, { "cell_type": "code", "execution_count": 38, "id": "57b7ce34", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "x |--> e^(x^3 + x^2 + 3)" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "f.exp()" ] }, { "cell_type": "markdown", "id": "bb647a9e", "metadata": {}, "source": [ "
\n", " Ejercicio 5. \n", " En una variable guarda la función seno. Evalúa la función en $\\pi/2$ (debería salirte un valor que conoces). Después calcula la integral de la función con las técnicas que hemos aprendido.\n", "
" ] }, { "cell_type": "markdown", "id": "95ebeb89", "metadata": {}, "source": [ "## Representación gráfica" ] }, { "cell_type": "markdown", "id": "0d552153", "metadata": {}, "source": [ "Sage nos permite representar gráficamente todo tipo de objetos: gráficas de funciones, nubes de puntos, superficies en 3D...\n", "\n", "Empecemos dibujando la función seno entre $-\\pi/2$ y $\\pi/2$:" ] }, { "cell_type": "code", "execution_count": 39, "id": "fd16de27", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHUCAYAAAC3aGWBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8PUlEQVR4nO3deZzN9eLH8fdkGZQ5uQlTCdU1GtEVgylSydiXSLYmlZRKXdQN3W6oW9JtuzdDKUtFqWyRfR1cY8lvlCVSCZXJEudYhxmf3x+fS8k2xjnnc5bX8/H4PpjjnDPvc5ymt8/3+/l8YowxRgAAAAh7F7gOAAAAAP+g2AEAAEQIih0AAECEoNgBAABECIodAABAhKDYAQAARAiKHQAAQISg2AGIeMYY+Xw+sWwngEhHsQMQ8fbu3SuPx6O9e/e6jgIAAUWxAwAAiBAUOwAAgAhBsQMAAIgQFDsAAIAIQbEDEFQLFy5U8+bNddlllykmJkaTJk0662PS09NVvXp1FSlSRFdddZXeeuutwAcFgDBEsQMQVPv379f111+vwYMH5+n+mzZtUpMmTVS3bl1lZmbq6aef1uOPP67x48cHOCkAhJ8Yw8JOAByJiYnRxIkT1apVq9Pep3fv3po8ebK+/vrr47d169ZNX375pTIyMvL0fXw+nzwej7xer+Li4s43NgCErIKuAwDAmWRkZCglJeWE2xo2bKjhw4fryJEjKlSo0EmPyc7OVnZ29vGvfT5fwHMCiD5Hj0p79kg7d0o7dthj925p//6Tj4MHpZwcKTfXHgULSh995P9MFDsAIS0rK0ulS5c+4bbSpUsrJydHO3fuVHx8/EmPGThwoAYMGBCsiAAikDHSrl3Spk3Sli3S5s2//bp5s/Tzz7bQ5eae/NjChaULL5Quusj+euGFUtGitswVKGCPokUDk5tiByDkxcTEnPD1sStI/nj7MX379lWvXr2Of+3z+VS2bNnABQQQto4etYXt669PPn799bf7FS0qlStnj6Qk6fLLpUsv/e0oWdL+WqKEdIoTCUFDsQMQ0sqUKaOsrKwTbtu+fbsKFiyoSy655JSPiY2NVWxsbDDiAQgjR49KGzdKK1f+dmRmSseu1ihaVEpIkK69VmrYUKpUSbrqKlvmLrlEOs2/JUMKxQ5ASEtOTtaUKVNOuG3WrFmqUaPGKa+vA4BjfD4pI0NavNgeK1dKx7aMLl9eql5d6ttXuv56W+auvFK6IMzXC6HYAQiqffv26dtvvz3+9aZNm7Rq1Sr96U9/0pVXXqm+ffvqp59+0vvvvy/JzoAdPHiwevXqpa5duyojI0PDhw/XR4G46hhAWPN6pfnzpXnzbJH78ks7SleypHTTTdLTT9syd8MNdgQuErHcCYCgWrBggW699daTbu/cubNGjRqle++9Vz/88IMWLFhw/M/S09PVs2dPrV27Vpdddpl69+6tbt265fl7stwJEJlycqQVK6RZs+yxbJmdzHD11VLdulKdOvaoWDE8TqP6A8UOQMSj2AGRY/t2acoUado0ae5cO0p38cXS7bdLKSlSgwb2NGu04lQsAAAIad98I332mT2WLLG3JSdLTzxhy1yNGnYJEVDsAABACNq4Ufr4Y2nsWGntWjtjtUEDafhwqVkzu7QITkaxAwAAIWHLFumTT2yZW7nSLvDbsqX0z3/akblixVwnDH0UOwAA4MzevdKnn0ojR9qZrLGxdkSuTx+pSRPK3Lmi2AEAgKAyxl4rN3y4HaE7cMBOfvjgA6lFC4k5TvlHsQMAAEGxbZv0/vvSiBF2QkT58lLv3lLnznZxYJw/ih0AAAgYY6RFi6Q335QmTrT7qLZpIw0dKt1yS/jv9BBqKHYAAMDv9u+XPvxQGjxY+uoruwfr669Lqal23TkEBsUOAAD4zfffS0OG2OvnvF47EeKVV+w1dNGy+4NLFDsAAHDeli2TXn7Znm69+GLpgQekRx6RKlRwnSy6UOwAAEC+HD0qTZ0q/etf9jq6P//ZXjuXmsoyJa5wySIAADgnubl2V4iqVe3yJDk50oQJ0tdfSw89RKlziWIHAADyJCdHGjNGuu46qX17qWxZO1K3ZIl0xx3s1xoKKHYAAOCMcnLs+nOJidLdd0tXX22vqZs+XapTx3U6/B7FDgAAnNKRI3Yx4YQEu4hwYqL0xRfS559LNWu6TodTodgBiFhpaWlKTExUUlKS6yhAWDl61K5Bl5AgdekiVasmZWZKkyZJ1au7TocziTHGGNchACCQfD6fPB6PvF6v4tiEEjijWbPsNl+rVkktW0rPPy9VqeI6FfKKETsAAKCVK6UGDaSGDe2s1sWL7QgdpS68UOwAAIhi330ndegg1agh/fijLXOLF0s33eQ6GfKDYgcAQBTasUN6/HHp2mulhQuld96RVq+2p1/Z+it8sfMEAABR5PBhafBgacAA+/WAAdJf/8qiwpGCYgcAQJSYNk3q2VP69lu7Q8Rzz0klS7pOBX/iVCwAABFuwwapSROpaVPp8svt0iVDhlDqIhHFDgCACLV/v9S3r53Zun693c917ly7xysiE6diAQCIMMZIn31mr5375Rfp73+3a9MVKeI6GQKNYgcAQAT5/nvpscfs9XRNmkjz5tm9XREdOBULAEAEOHJEGjhQqlxZWrNGmjjR7ulKqYsujNgBABDmVqyQHnhAWrtWeuIJ6dlnpQsvdJ0KLjBiBwBAmNq/3xa52rWlAgWk5culQYModdGMETsAAMLQrFl2LbqsLOmll+z6dAX5v3rUY8QOAIAwsmuX1Lmz1LChdNVV9nq6v/2NUgeLjwEAAGFi3DjpkUfsRIkRI6R772VfV5yIETsAAELcr79KHTtKbdtKdepIX38t3XcfpQ4nY8QOAIAQNnWqnfF66JA0erQteBQ6nA4jdgAAhCCfT+rSRWrWTKpWzV5L16kTpQ5nxogdAAAhZu5c6f777SnYd96xBY9Ch7xgxA5AxEpLS1NiYqKSkpJcRwHyJDvbrkt3++12x4jVq+1pWEod8irGGGNchwCAQPL5fPJ4PPJ6vYqLi3MdBzildevs9XPr1tmtwXr2lC5g+AXniI8MAAAOGSMNHSpVr25H7JYvt6N2lDrkBx8bAAAc2bFDatXKrk13333SypXSX/7iOhXCGZMnAABwYPZs6Z577GLDn30mtWjhOhEiASN2AAAE0ZEjdguwlBSpShU7QYJSB39hxA4AgCDZskVq10764gvplVeYIAH/o9gBABAEU6faU68XXSQtWiTVru06ESIR/04AACCAjhyReve2O0jcdJOUmUmpQ+AwYgcAQIBs3Sq1b2+XMHnlFalXLxYbRmBR7AAACIDp06XUVKlYMWnhQik52XUiRANOxQIA4Ec5OVLfvlKTJvaUa2YmpQ7Bw4gdAAB+snOnPfW6YIE0aJD05JPMekVwUewAAPCDlSul1q2lgwft4sO33uo6EaIR/44AAOA8jRplZ7yWLm0LHqUOrlDsAADIp8OHf9vnNTXVTpIoW9Z1KkQzTsUCAJAPP/8s3XmnHaEbNkzq2tV1IoBiBwDAOVu8WGrbVipQQEpPZ8FhhA5OxQIAcA7eesteQ1exoh2to9QhlFDsAADIgyNHpO7dpYcflrp1k+bMsZMlgFDCqVgAAM7i11+lu+6yp13fflt68EHXiYBTo9gBAHAG69dLzZvbcjd7tnTLLa4TAafHqVgAESstLU2JiYlKSkpyHQVhauZMew1d4cLS8uWUOoS+GGOMcR0CAALJ5/PJ4/HI6/UqLi7OdRyEAWOk//xH6tVLatRI+ugjiY8OwgEjdgAA/M7hw/Yauh49bLGbPJlSh/DBNXYAAPzPzp1SmzbS0qXSyJHSvfe6TgScG4odAACSNm6UmjSRvF5p3jy79ysQbjgVCwCIev/9r5ScbHeSWLqUUofwRbEDAES1Tz+V6teXKleWliyRrrrKdSIg/yh2AICoZIz0r3/ZhYfbtJFmzZL+9CfXqYDzQ7EDAESdnBzpkUekp56SnnlGGj1aio11nQo4f0yeAABElX37pHbt7OLD774rdeniOhHgPxQ7AEDU+PlnqVkz6dtvpWnTpJQU14kA/6LYAQCiwurVUtOm9tq6xYulqlVdJwL8j2vsAAARb/58qU4d6ZJL7HImlDpEKoodACCiffKJ3e+1Vi1p4ULp8stdJwICh2IHAIhYgwdL7dtLbdtKn38uFS/uOhEQWBQ7AEDEMcYuY/LYY1LPntL770uFC7tOBQQekycAABElJ0d66CFpxAi7APGTT7pOBAQPxQ4AEDEOHLCnXqdPt6N0qamuEwHBRbEDAESEX3+1a9R99ZU0ZYqdMAFEG4odACDs/fSTXWx4+3Zp3jypZk3XiQA3KHYAgLD27bfS7bf/tvBwQoLrRIA7zIoFELHS0tKUmJiopKQk11EQIF9+aRceLlqUUgdIUowxxrgOAQCB5PP55PF45PV6FRcX5zoO/GTJErtF2NVX28kSl17qOhHgHiN2AICwM3OmPf16/fX2mjpKHWBR7AAAYeXTT6XmzaX69e1IHYOwwG8odgCAsPHuu3adurvukiZMsNfWAfgNxQ4AEBbeeEPq2lV6+GG7+HChQq4TAaGHYgcACHkvvmj3fO3TR3rzTekC/u8FnBL/aQAAQpYx0jPPSH//u/Tcc7bgxcS4TgWELhYoBgCEJGOkJ5+UXntN+te/7O8BnBnFDgAQco4elbp3l4YOlQYPlh591HUiIDxQ7AAAISU3V3rgAem996Thw6X773edCAgfFDsAQMg4ckRKTZXGjZPGjJE6dHCdCAgvFDsAQEjIzrZr1E2dKn3yidS6tetEQPih2AEAnDt40Ba5+fOlSZOkJk1cJwLCE8UOAODUvn1SixbSsmV2tK5+fdeJgPBFsQMAOLN3r9S4sfTVV9KMGVLduq4TAeGNYgcAcMLns6VuzRpp9mypVi3XiYDwR7EDAASdzyc1aiStW2dLXc2arhMBkYEtxQAE3ZAhQ1ShQgUVKVJE1atX16JFi0573wULFigmJuakY/369UFMDH+i1AGBw4gdgKD6+OOP1aNHDw0ZMkQ33XST3n77bTVu3Fjr1q3TlVdeedrHbdiwQXFxcce/vvTSS4MRF37m9dpSt369NGeOVKOG60RAZIkxxhjXIQBEj1q1aumGG27Q0KFDj9927bXXqlWrVho4cOBJ91+wYIFuvfVW7d69WxdffHG+vqfP55PH45HX6z2hHCK4vF6pYUNpwwZb6qpXd50IiDycigUQNIcPH9bKlSuVkpJywu0pKSlasmTJGR9brVo1xcfHq379+po/f/4Z75udnS2fz3fCAbf27JFSUqRvvqHUAYFEsQMQNDt37lRubq5Kly59wu2lS5dWVlbWKR8THx+vYcOGafz48ZowYYISEhJUv359LVy48LTfZ+DAgfJ4PMePsmXL+vV14NwcK3UbN1LqgEDjGjsAQRcTE3PC18aYk247JiEhQQkJCce/Tk5O1tatW/XKK6/o5ptvPuVj+vbtq169eh3/2ufzUe4cOVbqvvtOmjtXqlbNdSIgsjFiByBoSpYsqQIFCpw0Ord9+/aTRvHOpHbt2tq4ceNp/zw2NlZxcXEnHAg+r5dSBwQbxQ5A0BQuXFjVq1fX7NmzT7h99uzZuvHGG/P8PJmZmYqPj/d3PPjRsR0lvv3Wnn79y19cJwKiA6diAQRVr169lJqaqho1aig5OVnDhg3Tli1b1K1bN0n2NOpPP/2k999/X5L0xhtvqHz58qpcubIOHz6s0aNHa/z48Ro/frzLl4Ez2L9fatZMWruWkTog2Ch2AIKqXbt22rVrl5577jlt27ZN1113naZNm6Zy5cpJkrZt26YtW7Ycv//hw4f15JNP6qefflLRokVVuXJlTZ06VU2aNHH1EnAGBw9KLVpI//d/0qxZrFMHBBvr2AGIeKxjFxzZ2VKrVtLChdL06dJp5rYACCBG7AAA5+3wYaltW2nBAunzzyl1gCsUOwDAeTlyROrQQZo5U5o8Wapf33UiIHpR7AAA+ZabK91zjy10EybYLcMAuEOxAwDkS26udN990qefSp98IjVv7joRAIodAOCcHT0qPfSQNGaM9OGHUuvWrhMBkCh2AIBzZIzUvbs0YoT03ntSu3auEwE4hmIHAMgzY6SePaWhQ6V335VSU10nAvB7bCkGAMgTY6Q+faR//1saMkTq0sV1IgB/RLEDAOTJ889LL78svf669PDDrtMAOBWKHQDgrN54Q+rXT3rhBalHD9dpAJwOxQ4AcEYjRtjr6p56Surb13UaAGdCsQMAnNann0pdu0rdukkvvSTFxLhOBOBMKHYAgFOaNk3q1MluF5aWRqkDwgHFDgBwkvR0qU0bqUkTaeRI6QL+bwGEBf5TBRCx0tLSlJiYqKSkJNdRwsqKFXZ7sJtuksaOlQoVcp0IQF7FGGOM6xAAEEg+n08ej0der1dxcXGu44S0NWukevWkhARp1izpootcJwJwLhixAwBIkr77TmrQQCpbVpo6lVIHhCOKHQBAP/4o3X67FBdnR+pKlHCdCEB+UOwAIMrt2GFH6o4elebMkUqVcp0IQH4VdB0AAODOnj1Sw4bS7t3SokX2NCyA8EWxA4AotX+/1LSp9MMPdnmTP//ZdSIA54tiBwBRKDtbat1a+uorae5cqUoV14kA+APFDgCiTG6ulJpqR+mmT5dq1nSdCIC/UOwAIIoYI3XvLo0fb49bb3WdCIA/UewAIIr07y+99ZY0fLjUqpXrNAD8jeVOACBKvPmm9Nxz0ksvSfff7zoNgECg2AFAFPjoI+nxx6UnnpCeesp1GgCBQrEDgAg3c6Z0zz1S587Syy9LMTGuEwEIFIodAESwZcvssiaNGknvvCNdwE99IKLxnzgARKh166QmTaQbbpA+/lgqVMh1IgCBRrEDgAi0ZYvdKuzyy6UpU6RixVwnAhAMFDsAiDA7d0opKVLBgvb6uosvdp0IQLCwjh0ARJC9e+3p1927pf/+V4qPd50IQDBR7AAgQhzb/3X9ertd2DXXuE4EINgodgAQAXJz7ZImixZJM2ZI1aq5TgTABYodAIQ5Y+ziw+PG2f1fb7nFdSIArjB5AkDESktLU2JiopKSklxHCagBA6QhQ6Rhw9j/FYh2McYY4zoEAASSz+eTx+OR1+tVXFyc6zh+lZYmde8uDRwo9enjOg0A1xixA4AwNW6c9NhjUs+eUu/ertMACAUUOwAIQwsXSnffLbVvL73yCvu/ArAodgAQZtaskVq0kG66SRo5kv1fAfyGHwcAEEa2bpUaNZLKl5cmTpRiY10nAhBKKHYAECZ277alrmBBafp0KcLmgQDwA9axA4AwcOiQ1LKllJUlLVnCVmEATo1iBwAhLjdX6tRJ+uILae5cKSHBdSIAoYpiBwAhzBjpr3+VJk2y19QlJ7tOBCCUUewAIIS99JJdhHjYMDsTFgDOhMkTABCi3ntPevppqV8/qWtX12kAhAOKHQCEoBkzpC5dbKHr1891GgDhgmIHACFmxQrpzjulJk2kIUPYVQJA3lHsACCEfPut1LSpVKWKNHasXbMOAPKKYgcAIWL7drsAcYkS0pQpUrFirhMBCDf8WxAAQsC+fXakbv9+KSNDKlnSdSIA4YhiBwCOHTlir6nbsEFauNDuAwsA+UGxAwCHjLEzX+fNs/u//uUvrhMBCGcUOwBwaMAAu17d6NFS/fqu0wAId0yeAABHRo2yxe6FF+xesABwvih2AODAnDn2FOwDD0h9+7pOAyBSUOwARKy0tDQlJiYqKSnJdZQTrFkjtWljT72yADEAf4oxxhjXIQAgkHw+nzwej7xer+Li4pxm+flnqXZt6U9/khYtkooXdxoHQIRhxA4AgmTfPqlZMzsTdupUSh0A/2NWLAAEQU6O1K6d3TJs8WLp8stdJwIQiSh2ABBgxkjdu0uzZknTpklVq7pOBCBSUewAIMBefll6+21p+HCpQQPXaQBEMq6xA4AAGjtW6tNHeuYZ6f77XacBEOkodgAQIIsWSZ07S3ffLT33nOs0AKIBxQ4AAmDDBqllS+nGG+0pWNaqAxAMFDsA8LPt26UmTaQyZaQJE6TChV0nAhAtmDwBAH504IDUooW0f780d65UooTrRACiCcUOAPwkN9deT7d6tZSeLpUv7zoRgGhDsQMAP3nySemzz+xRo4brNACiEcUOAPzgP/+R3nhDSkuz24YBgAtMngCA8zRpktSjh/TEE9Ijj7hOAyCaUewA4DwsXy517Ci1aWN3mAAAlyh2AJBP339vT7v+5S/S++9LF/ATFYBj/BgCgHz49Ve7Vp3HI02eLBUt6joRADB5AgDO2aFDUqtW0s6d0tKlUsmSrhMBgEWxA4BzcPSodN999tq6efOka65xnQgAfkOxA4Bz8Mwz0scfS598YveBBYBQwjV2ACJWWlqaEhMTlZSU5JfnGzZMGjhQ+te/pDvv9MtTAoBfxRhjjOsQABBIPp9PHo9HXq9XcXFx+XqO6dOl5s2lbt2kN9+UYmL8HBIA/IAROwA4i1WrpLvukho3trtLUOoAhCqKHQCcwdatUtOmUkKCNHasVJArkwGEMIodAJyG12vXqitUSPr8c+nCC10nAoAz49+eAHAKR47YCRJbt0pLlkhlyrhOBABnR7EDgD8wRnrwQSk9XZo5U0pMdJ0IAPKGYgcAf/DPf0qjRkkffCDdeqvrNACQd1xjBwC/88EH0rPPSs8/L919t+s0AHBuKHYA8D/z5kldutjj7393nQYAzh3FDgAkrV0rtW4t3XKLNHQoa9UBCE8UOwBRb9s2u6zJlVdK48bZ5U0AIBxR7ABEtX37pGbNpJwcado0KZ87jgFASGBWLIColZMjtW8vffONtGiRdMUVrhMBwPmh2AGISsZIjz8uzZghTZ0q/eUvrhMBwPmj2AGISq+8YidJvPOO1LCh6zQA4B9cYwcg6nz6qfTUU9LTT0sPPOA6DQD4T4wxxrgOAQCB5PP55PF45PV6tXp1nOrXl9q0kUaPZlkTAJGFETsAUeO776SWLaXataURIyh1ACIPI3YAIt6xEbsKFbyKjY3TkiVSiRKuUwGA/zF5AkDEO3jQ/rp3rzR3LqUOQOTKU7Ezxmjv3r2BzgIAfpGdna3s7GxJ0tGjUpcuOZKkkSN9uuQSyedzmQ4A8qd48eKKOcs1JHk6FXvsNAYAAADc8Hq9ijvL9jh5KnZnGrFLSkrSihUr8pfwd3w+n8qWLautW7eeNXRe+CuXv54nFJ8rVN9zfz5XKGby5/seiq/Pn8+V3+c5NmI3alQh/eMfRfXEE1v06qtVtG7dOl1++eXOcgXqeULxufj54ua5+PkS/OcJ5mc9LyN2eToVGxMTc9qwBQoU8MsLOSYuLs4vz+evXP58faH6XKH2nvvzuUIx0zH+eN9D9fWFwt/f5MlSv35Sz55Sjx4X69VX7Q9F17kC8Tyh/Fz8fAn+c0n8fAnm8xwTKp/1817u5NFHHz3fpwgIf+Xy5+sL1efyl1B8faGYyZ9C9fW5/vtbscLuAduqld1hwt9cv75wei5/CcXXF4qZ/ClUX18o/v350/nmCpnlTn6/gKg/GzROj/fcDd73wPrhB7tOXYUK0rx5UtGi0o8//nj8VMkVV1zhOmJU4HPuBu978IXaex4yCxTHxsaqX79+io2NdR0lavCeu8H7Hji7d0tNmkgXXWRPxRYtam8/9l7zngcPn3M3eN+DL9Te85AZsQOA85GdLTVsKK1eLWVkSBUr/vZnofYvagAIFBYoBhD2jJG6dJGWLpXmzDmx1AFANKHYAQh7//iHNGaMNHasVKeO6zQA4E7IXGMHAPnx7rvSCy9IgwZJ7dq5TgMAblHsAIStmTOlbt3s8be/uU4DAO45LXYvvPCCbrzxRhUrVkwXX3xxnh5z7733KiYm5oSjdu3agQ0aQfLznhtj1L9/f1122WUqWrSobrnlFq1duzawQSPI7t27lZqaKo/HI4/Ho9TUVO3Zs+eMj+FzfnZffindeafUqJH05pvSWRZjRwAMGTJEFSpUUJEiRVS9enUtWrTotPddsGDBSZ/pmJgYrV+/PoiJw9vChQvVvHlzXXbZZYqJidGkSZPO+pj09HRVr15dRYoU0VVXXaW33nor8EEjzLm+764/606L3eHDh9W2bVs9/PDD5/S4Ro0aadu2bcePadOmBShh5MnPe/7yyy/rtdde0+DBg7VixQqVKVNGDRo0OO02czhRx44dtWrVKs2YMUMzZszQqlWrlJqaetbH8Tk/vR9/lJo2tZMkxo6VCnK1cNB9/PHH6tGjh/7+978rMzNTdevWVePGjbVly5YzPm7Dhg0nfK7//Oc/Bylx+Nu/f7+uv/56DR48OE/337Rpk5o0aaK6desqMzNTTz/9tB5//HGNHz8+wEkjy7m+78c4+6ybEDBy5Ejj8XjydN/OnTubli1bBjRPNMjre3706FFTpkwZ89JLLx2/7dChQ8bj8Zi33norgAkjw7p164wks3Tp0uO3ZWRkGElm/fr1p30cn/PT83qNqVrVmCuvNObnn/P6GK+RZLxeb2DDRZGaNWuabt26nXBbpUqVTJ8+fU55//nz5xtJZvfu3UFIF/kkmYkTJ57xPk899ZSpVKnSCbc99NBDpnbt2gFMFtny8r67/qyH5TV2CxYsUKlSpVSxYkV17dpV27dvdx0pYm3atElZWVlKSUk5fltsbKzq1aunJUuWOEwWHjIyMuTxeFSrVq3jt9WuXVsej+es7x+f85MdOSK1bStt3ixNmybFx7tOFJ0OHz6slStXnvBzQZJSUlLO+rmuVq2a4uPjVb9+fc2fPz+QMaNeRkbGSX9HDRs21BdffKEjR444ShU9XH3Ww67YNW7cWGPGjNG8efP06quvasWKFbrtttuUnZ3tOlpEysrKkiSVLl36hNtLly59/M9wellZWSpVqtRJt5cqVeqM7x+f85MZIz38sN0mbMIEqXJl14mi186dO5Wbm3tOPxfi4+M1bNgwjR8/XhMmTFBCQoLq16+vhQsXBiNyVMrKyjrl31FOTo527tzpKFXkc/1Z9/uVKf3799eAAQPOeJ8VK1aoRo0a+Xr+dr9bz+C6665TjRo1VK5cOU2dOlWtW7fO13OGu0C/55IU84cr040xJ90WTfL6nksnv3fS2d8/Pucne/FFafhwadQo6bbbXKeBdG4/FxISEpSQkHD86+TkZG3dulWvvPKKbr755oDmjGan+js61e3wH9efdb8Xu+7du6t9+/ZnvE/58uX99v3i4+NVrlw5bdy40W/PGW4C+Z6XKVNGkv2XX/zvzntt3779pH8JRpO8vudfffWVfvnll5P+bMeOHef0/kX753zMGOmZZ6T+/aXOnV2nQcmSJVWgQIGTRufO9edC7dq1NXr0aH/Hw/+UKVPmlH9HBQsW1CWXXOIoVXQK5mfd78WuZMmSKlmypL+f9rR27dqlrVu3nlA6ok0g3/MKFSqoTJkymj17tqpVqybJXl+Tnp6uQYMGBeR7hoO8vufJycnyer1avny5atasKUlatmyZvF6vbrzxxjx/v2j+nM+fL913ny10zz7rOg0kqXDhwqpevbpmz56tO+644/jts2fPVsuWLfP8PJmZmVH5mQ6W5ORkTZky5YTbZs2apRo1aqhQoUKOUkWnoH7WnUzZ+J/NmzebzMxMM2DAAHPRRReZzMxMk5mZafbu3Xv8PgkJCWbChAnGGGP27t1rnnjiCbNkyRKzadMmM3/+fJOcnGwuv/xy4/P5XL2MsHKu77kxxrz00kvG4/GYCRMmmNWrV5sOHTqY+Ph43vM8atSokalatarJyMgwGRkZpkqVKqZZs2Yn3IfP+amtWWOMx2PM7bcbk52d/+dhVqz/jR071hQqVMgMHz7crFu3zvTo0cNceOGF5ocffjDGGNOnTx+Tmpp6/P6vv/66mThxovnmm2/MmjVrTJ8+fYwkM378eFcvIezs3bv3+M9sSea1114zmZmZZvPmzcaYk9/z77//3hQrVsz07NnTrFu3zgwfPtwUKlTIjBs3ztVLCEvn+r67/qw7LXadO3c2kk465s+ff/w+kszIkSONMcYcOHDApKSkmEsvvdQUKlTIXHnllaZz585my5Ytbl5AGDrX99wYu+RJv379TJkyZUxsbKy5+eabzerVq4MfPkzt2rXLdOrUyRQvXtwUL17cdOrU6aRp8HzOT/bzz3ZJkypVjNmz5/yei2IXGGlpaaZcuXKmcOHC5oYbbjDp6enH/6xz586mXr16x78eNGiQufrqq02RIkVMiRIlTJ06dczUqVMdpA5fx5bR+OPRuXNnY8zJ77kxxixYsMBUq1bNFC5c2JQvX94MHTo0+MHD3Lm+764/6zHG/O9KSgAIEfv2STffLG3fLi1dKl1xRf6eJy0tTWlpacrNzdU333wjr9eruLg4/4YFgBBCsQMQUnJypBYtpMWLpUWLpOuvP//n9Pl88ng8FDsAEY+NeACEDGOkRx6RZs+Wpk71T6kDgGhCsQMQMl56SXrnHWnECOkPC+YDAPIg7HaeABCZPvxQevppqV8/u7wJAODcUewAOJee/ttadf36uU4DAOGLYgfAqXXrpFat7CzYYcMkdjoCgPyj2AFwZts2qUkTqWxZadw4qXBh14kAILxR7AA4sW+f1KyZXd5k2jTJ43GdCADCH7NiAQRdTo7Urp20caNdqy6/CxADAE5EsQMQVMZIjz4qzZxpR+pYqw4A/IdiByCoBg2ykySGD2etOgDwN66xAxA0H34o9e0rPfusdP/9rtMAQOSh2AEIimNr1d1zj9S/v+s0ABCZKHYAAu7YWnV169otw1irDgACg2IHIKCOrVV3xRXS+PGsVQcAgUSxAxAwx9aqO3KEteoAIBiYFQsgIP64Vl3Zsq4TAUDko9gB8DvWqgMANyh2APyOteoAwA2usQPgV6NH27Xq/vEP1qoDgGCj2AHwm9mz7Vp1990nDRjgOg0ARB+KHQC/yMyUWreWGjSQ3n47NNaqS0tLU2JiopKSklxHAYCgiDHGGNchAIS3TZukG2+0a9XNny9ddJHrRCfy+XzyeDzyer2Ki4tzHQcAAoYROwDnZedOqVEj6cILpalTQ6/UAUA0YVYsgHw7cEBq0ULavVtaskQqVcp1IgCIbhQ7APmSkyN16CB9+aU9/XrNNa4TAQAodgDOmTFS9+721Otnn0k1a7pOBACQKHYA8uHFF+3M13fflZo2dZ0GAHAMkycAnJNRo6RnnrHr1HXp4joNAOD3KHYA8mz6dOmBB6SuXe3OEgCA0EKxA5AnX3whtW0rNW4sDRkSGgsQAwBORLEDcFbffWevpbvuOmnsWKkgV+cCQEii2AE4ox077ALEHo80ZYpdiBgAEJr4dzeA09q/X2rWTPL5pIwM6dJLXScCAJwJxQ7AKeXkSO3aSWvXSunp0lVXuU4EADgbih2AkxgjPfywNHOmPf1avbrrRACAvKDYATjJgAF28eFRo+z1dQCA8MDkCQAneOstW+xeeEHq3Nl1GgDAuaDYAThu3DjpkUekxx6T+vZ1nQYAcK4odgAkSfPmSZ062QkTb7zBAsQAEI4odgCUmSm1aiXVqye99550AT8ZACAs8eMbiHLffmsnSCQkSOPHS4ULu04EAMgvih0QxbKypIYNpYsvlqZNk4oXd53Iv9LS0pSYmKikpCTXUQAgKGKMMcZ1CADB5/XaU687dkj//a9UvrzrRIHj8/nk8Xjk9XoVFxfnOg4ABAzr2AFR6NAhqWVLafNmaeHCyC51ABBNKHZAlMnNtbNfly2TZs+WqlRxnQgA4C8UOyCKGGPXqfvsM2nCBKlOHdeJAAD+RLEDoki/ftKwYdLw4VKLFq7TAAD8jVmxQJQYPFh6/nlp4EDp/vtdpwEABALFDogCn3wiPf641KOH1Lu36zQAgECh2AERbs4c6e67pY4dpVdfZaswAIhkFDsggi1fbrcKu+02acQItgoDgEjHj3kgQq1ZIzVuLF1/PVuFAUC0oNgBEej776WUFOmKK6TPP5cuvNB1IgBAMFDsgAizbZvUoIEtc7NmSSVKuE4EAAgW1rEDIsivv9qRuuxsu/9r6dKuEwEAgoliB0SIffukJk2krCy7/2u5cq4TAQCCjWIHRIBDh+zs13XrpPnzpWuvdZ0IAOACxQ4Iczk5UocO9tTrjBlS9equEwEAXKHYAWHs6FHpgQfszNdJk6R69VwnAgC4RLEDwpQxUq9e0vvvS2PGSE2buk4EAHCNYgeEqeeek/79b2noUHsqFgAA1rEDwtC//y317y+9+KLUrZvrNACAUEGxA8LMe+9JPXpIf/ub1KeP6zQAgFBCsQPCyKRJUpcuUteu0qBBUkyM60ShLS0tTYmJiUpKSnIdBQCCIsYYY1yHAHB2M2dKLVrY9eo+/FAqUMB1ovDh8/nk8Xjk9XoVFxfnOg4ABAwjdkAYWLDAFrqGDaUPPqDUAQBOjWIHhLiMDKlZM6luXemTT6TChV0nAgCEKoodEMJWrpQaNbK7SUyaJBUp4joRACCUUeyAELVmjZSSYvd9/fxzqVgx14kAAKGOYgeEoA0bpNtvl668Upo+XSpe3HUiAEA4oNgBIWbTJql+femSS6RZs6QSJVwnAgCEC4odEEK2bpVuu00qWlSaM0e69FLXiQAA4YRiB4SIrCw7UmeMNHeuFB/vOhEAINwUdB0AgLRzp72mbv9+adEie20dAADnimIHOLZnj539umOHlJ4uXXWV60QAgHBFsQMc2rtXatxY2rxZmj9fqlTJdSIAQDij2AGO7NsnNW0qrVtnr6mrWtV1IgBAuKPYAQ7s32+3CcvMtEua1KjhOhEAIBIwKxYIsgMHbKlbuVKaMUNKTnadCAAQKRixA4LowAGpeXNpxQpb6m66yXUiAEAkYcQOCJKDB6UWLaRly+w2YXXquE4EAIg0FDsgCA4elFq2lDIypKlTpbp1XSdyY/fu3UpNTZXH45HH41Fqaqr27Nlzxsfce++9iomJOeGoXbt2cAIDQJjhVCwQYIcOSXfcIS1eLE2bJtWr5zqROx07dtSPP/6oGTNmSJIefPBBpaamasqUKWd8XKNGjTRy5MjjXxcuXDigOQEgXFHsgAA6VuoWLpQ+/1y65RbXidz5+uuvNWPGDC1dulS1atWSJL3zzjtKTk7Whg0blJCQcNrHxsbGqkyZMsGKCgBhi1OxQIBkZ0tt2kgLFkhTpki33eY6kVsZGRnyeDzHS50k1a5dWx6PR0uWLDnjYxcsWKBSpUqpYsWK6tq1q7Zv337G+2dnZ8vn851wAEA0oNgBAXCs1M2bZ0td/fquE7mXlZWlUqVKnXR7qVKllJWVddrHNW7cWGPGjNG8efP06quvasWKFbrtttuUnZ192scMHDjw+HV8Ho9HZcuW9ctrAIBQR7ED/Cw7W2rbVpozR/rsM+n2210nCqz+/fufNLnhj8cXX3whSYqJiTnp8caYU95+TLt27dS0aVNdd911at68uaZPn65vvvlGU6dOPe1j+vbtK6/Xe/zYunXr+b9QAAgDXGMH+NGhQ1Lr1nakbtIkKSXFdaLA6969u9q3b3/G+5QvX15fffWVfvnll5P+bMeOHSpdunSev198fLzKlSunjRs3nvY+sbGxio2NzfNzAkCkoNgBfnLggF3S5L//tRMlIn2k7piSJUuqZMmSZ71fcnKyvF6vli9frpo1a0qSli1bJq/XqxtvvDHP32/Xrl3aunWr4uPj850ZACIVp2IBP9i3T2ra1K5TN3169JS6c3HttdeqUaNG6tq1q5YuXaqlS5eqa9euatas2QkzYitVqqSJEydKkvbt26cnn3xSGRkZ+uGHH7RgwQI1b95cJUuW1B133OHqpQBAyKLYAefJ55MaNbJ7v86cGd3r1J3NmDFjVKVKFaWkpCglJUVVq1bVBx98cMJ9NmzYIK/XK0kqUKCAVq9erZYtW6pixYrq3LmzKlasqIyMDBUvXtzFSwCAkBZjjDGuQwDhavduW+q++caWuv+dYUSI8fl88ng88nq9iouLcx0HAAKGa+yAfNq1S2rQQNq8WZo7V7rhBteJAADRjmIH5MP27fY6uqwsaf58qWpV14kAAKDYAeds2za74PDu3XZXicRE14kAALAodsA5+PFHuzXYgQNSerpUsaLrRAAA/IZiB+TR5s221OXk2FJ39dWuEwEAcCKWOwHy4Ntv7TImxkgLF1LqAAChiWIHnMXq1VLdulKRIrbUlSvnOhEAAKdGsQPOYNkyO1JXpowtdVdc4ToRAACnR7EDTmPePDv7NTHRLmlSqpTrRAAAnBnFDjiFyZOlJk2km26yO0pcfLHrRAAAnB3FDviDMWOk1q2lZs1swbvwQteJAADIG4od8DtDh0qpqfYYO1aKjXWdCACAvKPYAf/z0kvSI49Ijz8uDR8uFWSVRwBAmKHYIeoZI/XpI/XtK/XrJ73+unQB/2UAAMIQYxKIajk50qOPSsOGSa+9JvXs6ToR/CktLU1paWnKzc11HQUAgiLGGGNchwBcOHhQ6tBB+vxz6Z13pPvuc50IgeLz+eTxeOT1ehUXF+c6DgAEDCN2iEq7d0stWkgrV0qffSY1beo6EQAA549ih6jz449So0bStm3S3LlScrLrRAAA+AfFDlHl66+lhg2lmBhp8WLp2mtdJwIAwH+Y+4eosWSJ3UnC47G/p9QBACINxQ5RYcoU6fbbpeuukxYulC6/3HUiAAD8j2KHiDdihHTHHfYU7MyZUokSrhMBABAYFDtELGOkF16QunSRHnhAGjdOKlrUdSoAAAKHYoeIlJMjde8uPfOM1L+/3QO2QAHXqQAACCxmxSLi7NsntWtnT7u+/bb04IOuEwEAEBwUO0SUn36SmjWTvvtOmjrVXlcHAEC0oNghYnz5pS11kl2jrmpVt3kAAAg2rrFDRJgxQ6pTR7r0UmnZMkodACA6UewQ9oYNsyN19erZNeouu8x1IgAA3KDYIWwdPSr17i099JDUrZs0aZJ00UWuUwEA4A7X2CEsHTwode5s16Z7/XXpr3+1+78CABDNKHYIO1lZdieJL7+UJkyQWrVynQgAgNBAsUNY+b//k1q2lHJzpfR0KSnJdSIAAEIH19ghbHzyiZ35WqaMtGIFpQ4AgD+i2CHkHT0qPfus3U3ijjvszNfLL3edCgCA0MOpWIS0ffuke+6xM14HDrSzYJkkAQDAqVHsELJ++EFq0ULatEn67DOpeXPXiRBu0tLSlJaWptzcXNdRACAoYowxxnUI4I8WLpTatJHi4qTJk6XKlV0nQjjz+XzyeDzyer2Ki4tzHQcAAoZr7BBy3nlHql9fuu46aflySh0AAHlFsUPIOHJEeuwx6cEH7TFrlnTJJa5TAQAQPrjGDiFh2zbprrukpUuloUPtFmEAAODcUOzg3OLFUtu2drZrerp0442uEwEAEJ44FQtnjJH+8x/p1lulihXtrhKUOgAA8o9iByf275fuvlv661/tdXVz5tgdJQAAQP5xKhZB9+23UuvW0nffSR99JLVv7zoRAACRgRE7BNXkyVKNGtKhQ3YpE0odAAD+Q7FDUBw5Ij3xhNSypb2mbsUK1qcDAMDfOBWLgNu82Y7MffGF9Prr9ro69nsFAMD/KHYIqClTpM6d7dZgixdLtWq5TgQAQOTiVCwC4sgR6W9/k1q0kOrWtUuZUOoAAAgsRuzgd5s2SZ062evoXn1V6tmTU68AAAQDxQ5+NXq09Mgjdo/XRYuk2rVdJwIAIHpwKhZ+4fXaUbrUVDvzddUqSh0AAMHGiB3O2+LFdheJ3bulMWOkjh1dJwIAIDoxYod8O3JEevZZqV49qWxZ6csvKXUAALjEiB3y5bvv7KnXL76Q+veX+vaVCvJpAgDAKf5XjHNijPT++1L37lKpUvY0LNfSAQAQGjgVizzbsUO66y7p3nulNm2kzExKHUJbWlqaEhMTlZSU5DoKAARFjDHGuA6B0Pfpp3YZE2OkIUNswQPChc/nk8fjkdfrVVxcnOs4ABAwjNjhjHbskNq1s0Xu5pultWspdQAAhCquscNpjR8vPfywlJsrffSRLXjsIAEAQOhixA4n2blT6tBBuvNO6aab7Chd+/aUOgAAQh0jdjjOGGnCBHst3ZEjdrHhDh0odAAAhAtG7CBJ2rpVatXKjtIlJ9tRuo4dKXUAAIQTil2Uy82V/vMfKTFRWrHCXlc3caIUH+86GQAAOFcUuyj25Zd2dK5HDyk1Vfr6a6l1a0bpAAAIVxS7KHTggNS7t1S9uv394sV2bTqPx3UyAABwPpg8EUWMsadZe/aUfvlFeu456cknpcKFXScDAAD+QLGLEuvXS48/Ls2eLTVtKs2dK11zjetUAADAnzgVG+H27pWeekqqUkX67jtpyhTp888pdQAARCJG7CKUMXa3iCeflPbskfr1s78vUsR1MgAAECiM2EWg5cvtvq6dOkk33mhnuz7zDKUOAIBIR7GLIN9/b7f+qlVL8nqlWbOkceOkcuVcJwMAAMFAsYsAu3bZma6VKkmLFkkjRkiZmVKDBq6TAQCAYOIauzB26JDdNeLFF6WjR+11dD17SsWKuU4GAABcoNiFoaNHpTFj7HVzP/8sPfSQ9OyzUqlSrpMBAACXKHZhxBhp8mSpf39p1SrpjjvsunQVK7pOBgAAQgHX2IUBY+zac0lJUqtWduuvRYukCRModQAA4DcUuxBmjDRtmp3l2ry5vXZu3jxpwQKpTh3X6QAAQKih2IUgY6SZM6XkZLv9V+HC0pw5Unq6dOutrtMB4SMtLU2JiYlKSkpyHQUAgiLGGGNch4CVk2PXnXv5ZbtcSXKyNGCAdPvtUkyM63RA+PL5fPJ4PPJ6vYqLi3MdBwAChskTIeDAAbv23KuvSj/8IKWk2EkR9etT6AAAQN5R7BzauVNKS5PefFPavVtq185OiKhWzXUyAAAQjih2DmzcaBcWHj7cfv3AA3Zh4QoV3OYCAADhjWIXJEeP2gkRb74pTZ8uXXKJ1Lu39OijUsmSrtMBAIBIQLELsF9/ld5/XxoyxI7U3XCDNHKkPe1atKjrdAAAIJJQ7ALAGGnxYmnYMOnTT+1oXevW0qhRdqYrEyIAAEAgUOz86OefpQ8/tNfOrV8vXXON9PzzUufO7OMKAAACj2J3nvbtszNZR4+W5s6VChWye7gOGSLdcgujcwAAIHgodvmQk2N3gvjgA2nSJLsOXb169tRrmzbSxRe7TggAAKIRxS6Pjhyxe7ROmCBNnCj98ot07bXSM89IHTtK5cq5TggAAKIdxe4MDhyQZs2yRW7yZGnPHql8ealTJ3tUq8apVgAAEDoodn+wZYstc9OnSzNm2HJXubL02GN2Zuv111PmAABAaIr6Yrd/v5SebhcPnjXLzma94AKpZk3pH/+wEyESElynBAAAOLuoK3bZ2dKKFdKiRXYCxOLF0uHD0pVXSg0bSv/8p3TbbVKJEq6TAgAAnJuIL3bbt9sit2SJLXPLl9tyV7y4dPPN0iuvSCkpUsWKnGIFAADhLWKKnTG2xK1ZY4vcsWPrVvvnpUpJdetKgwbZX6tWlQpGzKsHwsMLL7ygqVOnatWqVSpcuLD27Nlz1scYYzRgwAANGzZMu3fvVq1atZSWlqbKlSsHPjAAhJmwqzbGSFlZ0rp19li79rff79pl71O8uFS9utS+vZSUZI9y5RiRA1w7fPiw2rZtq+TkZA0fPjxPj3n55Zf12muvadSoUapYsaL++c9/qkGDBtqwYYOKFy8e4MQAEF5ijDHGdYjfy862I29ZWdJPP0mbN0s//PDbsWmT5PXa+8bGSpUqSYmJ9qhc2f765z/bCRAAQtOoUaPUo0ePs47YGWN02WWXqUePHurdu7ckKTs7W6VLl9agQYP00EMP5en7+Xw+eTweeb1excXFnW98AAhZARmxmzTJTkjIybEL++bk2OPQIcnnO/Wxa5ctc7t3n/hcRYrYtePKl5dq17ajcMfKXIUKnE4FItmmTZuUlZWllJSU47fFxsaqXr16WrJkyWmLXXZ2trKzs49/7fP5Ap4VAEJBQGpRhw62xP1egQJ2hM3jkeLiTjyuvlqqUUMqU0YqXfq3X+Pj7a+cQgWiU1ZWliSpdOnSJ9xeunRpbd68+bSPGzhwoAYMGBDQbAAQigJS7H7+2Y6kHTsKFODUKBCp+vfvf9YStWLFCtWoUSPf3yPmD/+6M8acdNvv9e3bV7169Tr+tc/nU9myZfP9/QEgXASk2LEGHBA9unfvrvbt25/xPuXLl8/Xc5cpU0aSHbmLj48/fvv27dtPGsX7vdjYWMXGxubrewJAOOMKNQDnpWTJkipZsmRAnrtChQoqU6aMZs+erWrVqkmyM2vT09M1aNCggHxPAAhnnCAFEDRbtmzRqlWrtGXLFuXm5mrVqlVatWqV9u3bd/w+lSpV0sSJEyXZU7A9evTQiy++qIkTJ2rNmjW69957VaxYMXXs2NHVywCAkMWIHYCgefbZZ/Xee+8d//rYKNz8+fN1yy23SJI2bNgg77E1jSQ99dRTOnjwoB555JHjCxTPmjWLNewA4BRCbh07APA31rEDEC04FQsAABAhKHYAAAARgmIHAAAQIbjGDkDEM8Zo7969Kl68+BkXNgaAcEexAwAAiBCcigUAAIgQFDsAAIAIQbEDAACIEBQ7AACACEGxAwAAiBAUOwAAgAhBsQMAAIgQ/w9djqHMpDYIDwAAAABJRU5ErkJggg==\n", "text/plain": [ "Graphics object consisting of 1 graphics primitive" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "f(x)=sin(x)\n", "plot(f(x), (x, -pi/2, pi/2))" ] }, { "cell_type": "markdown", "id": "bd4feb94", "metadata": {}, "source": [ "Es posible almacenar una representación gráfica y mostrarla luego usando `.show()`. Así podemos poner opciones adicionales de visualización; la más interesante es cambiar el tamaño como en el ejemplo siguiente. Por cierto,\n", "también se puede poner dentro de la misma función `plot`." ] }, { "cell_type": "code", "execution_count": 40, "id": "f36267fc", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAR8AAADWCAYAAADox4aFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAfdklEQVR4nO3de1xUdf7H8RcpF211rIiLpaBtomW1CqmYt3QlNV3NzdU0wlwtLSvWWpWuWqnpmu2WqFnmJV1XN8TVNJNfAloMRi1spkmWGlgSSjqDpYD4/f3xfUgitwFm5szl83w85mFz5hzOZw729pzv+X6/x0cppRBCCCe7wugChBDeScJHCGEICR8hhCEkfIQQhpDwEUIYQsJHCGEICR8hhCEkfIQQhpDwEUIYQsJH2IVSCqvVinSYF7aS8PEwu3fvZtiwYbRu3RofHx82b95c5zbp6elERkYSEBBA+/btWbZsWb33W1xcjMlkori4uAFVC28k4eNhfv75Z2677TYWL15s0/pHjhxhyJAh9O7dm+zsbJ5++mkef/xxkpKSHFyp8HY+MrDUc/n4+JCcnMyIESNqXGfGjBls2bKFr776qmLZ5MmT+d///ofZbLZ5X1arFZPJhMVioWXLlo0pW3iJpkYXIIxlNpuJiYmptOyuu+5ixYoVlJWV4evrW+12JSUllJSUVLy3Wq0OrVM4l1JQVAT5+ZCXBwUFYLGA1apfZ87A+fPg5wdvv92wfUj4eLmCggKCg4MrLQsODub8+fOcPHmS0NDQarebN28es2fPdkaJwoGUgmPH4H//g337fn19+y2cPfvreldcAS1b/vr6zW/A11f/2VASPgIfH59K7y9eiV++/FIJCQlMmzat4r3VaqVNmzaOKVDYzYULsH8/7NkDH3+s/zx2TH9mMsEtt0CvXjBhArRtC23a6D+DgnQA2ZOEj5cLCQmhoKCg0rLCwkKaNm3KNddcU+N2/v7++Pv7O7o8YQdWK6SkwPvvw/btUFgITZtCZCSMGaPDpmtXuP56qOXfG7uT8PFy0dHRbN26tdKynTt3EhUVVWN7j3B9Vits3gzr18NHH0FZGdx8Mzz4IAwcCD16wJVXGlujhI+HOXPmDN98803F+yNHjpCTk8PVV19N27ZtSUhI4Pvvv2fNmjWAvrO1ePFipk2bxqRJkzCbzaxYsYL169cb9RVEA5WXw86d8M47+izn3Dno3RtefRWGDoV27Yyu8DJKeJTU1FQFVHnFxcUppZSKi4tTffv2rbRNWlqa6tKli/Lz81Ph4eFq6dKl9d6vxWJRgLJYLHb4FqI+fvhBqZdfViosTClQ6tZblVqwQKm8PKMrq5308xF2If18nG/vXli4UF9e+frq9puHH4Zu3ZzbdtNQctklhBtRCj74ABYsgPR0uPFGWLQIYmOhVSujq6sfGV4hhBu4cAE2boTbboO779Z9cJKS4Kuv4LHH3C94QMJHNFJiYiI33XQTt99+u9GleCSlYOtWfSt89Gho3Vqf8WRmwsiR0KSJ0RU2nLT5CLuQNh/7S0+HGTN0207fvvDyy7pPjqeQMx8hXMzRozBqFPTrpy+3UlIgNdWzggckfIRwGWfOwLPPQseOkJEB776rL69+/3v3uHtVX3K3SwiDKQVr18LMmXok+V//qi+3GjNo0x3ImY8QBvr2W31m88ADcMcdcPAgvPSS5wcPSPgIYYjz5+Fvf9OjyA8fhg8/1LfSw8ONrsx5JHyEcLKcHD2wc+ZMmDxZz59z2XxuXkHCRwgnKSuD55+HqCgoLQWzWfdO9oZLrOpI+IhGkU6Gtjl4EKKjYe5ceO45+OwzPQbLm0knQ2EX0smwekpBYqK+gxUWpm+fS05rcuYjhIOcPKnHYT32GPz5z/Df/0rwXEr6+QjhAB9/rKe4KCnRU5cOHmx0Ra5HznyEsKMLF2D+fD00on17fWdLgqd6Ej5C2MnJk3q60pkzdQ/lXbvguuuMrsp1yWWXEHaQmakHg547pyf7GjTI6Ipcn5z5CNFIb78Nffro51tlZ0vw2ErCR4gGKi2FRx+FSZP03azUVP3sK2EbuewSjZKYmEhiYiLl5eVGl+JUhYVw7736cuvNN+Ghh4yuyP1IJ0NhF97UyfC//4Xhw/VwiaQkPRpd1J9cdglRD5s36wfxhYbC559L8DSGhI8QNlBKP/lz5EgYMgTS0uQ2emNJ+AhRh7IymDIFnnpK99/ZsAGaNze6KvcnDc5C1MJq1f13du2CFStgwgSjK/IcEj5C1OD4cT004uhRPdNg//5GV+RZJHyEqEZuru4sWFamB4l27mx0RZ5H2nyEuMzevfouVvPmerZBCR7HkPARjeJpMxlu2wZ33gmdOsGePdCmjdEVeS7pZCjswhM6Ga5aBRMn6pHp69dDs2ZGV+TZ5MxHCOCNN+DBB/XdrPfek+BxBgkf4fXmzoXHH4cnn9TjtJrKbRinkPARXkspSEiAZ56B2bP1Q/w88ZnorkrCx0MtWbKEdu3aERAQQGRkJHv27Klx3bS0NHx8fKq8Dh486MSKnevCBX2288oretjE889L8DibnGB6oA0bNhAfH8+SJUu44447ePPNNxk8eDAHDhygbdu2NW6Xm5tbqbH42muvdUa5Tnf+vJ6DZ/VqmQ7DSHK3ywN1796drl27snTp0oplnTp1YsSIEcybN6/K+mlpadx5552cOnWKVq1aNWif7nK3q7QU7r8fNm2CNWtg7FijK/JectnlYUpLS/n888+Juezh3zExMWRkZNS6bZcuXQgNDWXAgAGkpqbWum5JSQlWq7XSy9WdO6dHpf/nP/qOlgSPsSR8PMzJkycpLy8nODi40vLg4GAKCgqq3SY0NJTly5eTlJTEpk2biIiIYMCAAezevbvG/cybNw+TyVTxauPivfHOnYN77oGPPoKtW2HECKMrEtLm46F8Lms9VUpVWXZRREQEERERFe+jo6PJz89n4cKF9OnTp9ptEhISmDZtWsV7q9XqsgF0MXjS0uD992HAAKMrEiBnPh4nMDCQJk2aVDnLKSwsrHI2VJsePXpw6NChGj/39/enZcuWlV6uSILHdUn4eBg/Pz8iIyNJSUmptDwlJYWePXva/HOys7MJDQ21d3lOJcHj2uSyywNNmzaN2NhYoqKiiI6OZvny5eTl5TF58mRAXzJ9//33rFmzBoC///3vhIeHc/PNN1NaWsratWtJSkoiKSnJyK/RKBI8rk/CxwONHj2aoqIiXnzxRY4fP07nzp3Zvn07YWFhABw/fpy8vLyK9UtLS3nqqaf4/vvvadasGTfffDPbtm1jyJAhRn2FRpHgcQ/Sz0fYhav08ykt1cGza5cEj6uTMx/hMc6fh/vug//7PwkedyDhIzxCeTmMHw9btujeywMHGl2RqIvc7RKN4gozGSqlH22zfj2sWwfDhhlWiqgHafMRdmFUm49SEB8Pr7+uZyKMi3ParkUjyZmPcGvPPKODZ8kSCR53I+Ej3NacOTBvnp6PZ8oUo6sR9SXhI9zSa6/Bs8/Ciy/CJUPMhBuR8BFuZ/lyHTgzZugAEu5Jwke4lQ0bYPJkmDpVX3LJ1KfuS8JHuI0PP4TYWBg3Dv7xDwkedyfhI9xCZqaehTAmBt55B66Qv7luT36FolGc0clw/34YMgS6doWNG8HX12G7Ek4knQyFXTiqk+HRo3DHHRAYCOnp0MD57YULkjMf4bJ+/FGP0QoI0O09EjyeRQaWCpdkscDgwXDmDHzyCYSEGF2RsDcJH+Fyzp2D4cPh8GHYvRvatze6IuEIEj7CpZw/D2PGwKefws6dcOutRlckHEXCR7gMpfRjjLdt0w/269XL6IqEI0n4CJcxfbqeFmPtWn1rXXg2udslXMJrr8HChfD3v+sezMLzSfiIRrFHJ8MNG/RA0enT4Ykn7FiccGnSyVDYRUM7GaamwqBB8Kc/werVMmzCm8ivWhjmiy9gxAjo2xdWrJDg8Tby6xaGyMvTnQhvuAGSksDPz+iKhLNJ+Ain++knfanl7w/bt0OLFkZXJIwgt9qFU509qx9tU1gIGRkybMKbSfgIpykvh7FjITtbNzR36GB0RcJIEj7CKZSCxx6DrVth82bo3t3oioTRJHyEU8ydC0uXwltvwdChRlcjXIE0OItGsaWT4apV+ikTs2fDxInOq024NulkKOyipk6GH3ygG5gnTIA335RJ38Wv5MxHOExWFtx7L9x9t36csQSPuJSEj3CIb77RoXPbbbB+PTSV1kVxGQkfYXc//gh33QVXX63vbjVvbnRFwhXJv0fCrs6c0VOg/vILmM1wzTVGVyRclYSPsKu4OMjN1XMvh4cbXY1wZRI+wi4u3jNNS9N3uH73OyOrEe6gUeGjlKK4uNhetQg3UlJSQklJScX7l18uBeDVV6106wZWq1GVCVfQokULfOq4vdmofj4X+3YIIcSlbJlUrlHhc/mZz+23305WVla161qtVtq0aUN+fn6NRdW2vaM/l/rq9/nFM5+dO5sycWIzRo06zsaNnThw4ADXXXed4fVdztWOn6fXZ8uZT6Muu3x8fCoV0qRJkzrTrmXLljWuU9f2jv5c6qvf52YzTJ0KI0fCggXFbNyo/9K5Sn3VcaXj5231Xc6u/XweffRRh27v6M/rIvX9+nlurh42ERWlH3XTpIlr1dcQUp9j67uc08Z2NXSCcWeR+mxXUADR0dCsGXz8se5MeOzYsYrT8uuvv97Q+qrjSsevOt5Yn9Nutfv7+/PCCy/g7+/vrF3Wi9Rnm+JiPWyitBTS03XwXKzv0j9djascv5p4Y30yql3YrKxMz8WTmQl79lR+jrqr/8stXI90MhQ2UUrPxZOaCjt2VA4eIRpCwkfY5LnnYM0a+Oc/oX9/o6sRnkBGtYs6LV0Kc+bA3/4G991X+TN7PC5ZeCdp8xG12rwZ/vhHPfn7a6/VPCGYtPmI+nLomc+cOXPo2bMnzZs3p1WrVjZtM378eHx8fCq9evTo4RK1KaWYNWsWrVu3plmzZvTr14/9+/fbvTaAU6dOERsbi8lkwmQyERsby+nTp2vdxt7HLiNDn+n88Y+waJHrz0S4ZMkS2rVrR0BAAJGRkezZs6fGddPS0qocKx8fHw4ePGj3unbv3s2wYcNo3bo1Pj4+bN68uc5t0tPTiYyMJCAggPbt27Ns2TK719XQ+ux17BwaPqWlpYwaNYopU6bUa7tBgwZx/Pjxitf27dtdorYFCxawaNEiFi9eTFZWFiEhIQwcONAhg2vHjh1LTk4OO3bsYMeOHeTk5BAbG1vndvY6dhc7EXbrptt6XP056hs2bCA+Pp5nnnmG7OxsevfuzeDBg8nLy6t1u9zc3ErH68Ybb7R7bT///DO33XYbixcvtmn9I0eOMGTIEHr37k12djZPP/00jz/+OElJSXavrSH1XdToY6ecYOXKlcpkMtm0blxcnBo+fLhD67mUrbVduHBBhYSEqFdeeaVi2blz55TJZFLLli2za00HDhxQgMrMzKxYZjabFaAOHjxY43b2OnY//KBUeLhSN92k1E8/2baNxWJRgLJYLI3ef0N069ZNTZ48udKyjh07qpkzZ1a7fmpqqgLUqVOnnFDdrwCVnJxc6zrTp09XHTt2rLTs4YcfVj169HBgZZot9dnr2Lnkv2dpaWkEBQXRoUMHJk2aRGFhodElceTIEQoKCoiJialY5u/vT9++fcnIyLDrvsxmMyaTie6XPFmvR48emEymOvfV2GNntcKQIbpPz44dcNVVDfoKTlVaWsrnn39e6XcDEBMTU+fx6tKlC6GhoQwYMIDU1FRHlmkzs9lc5bvcddddfPbZZ5SVlRlUVVWNPXYuFz6DBw9m3bp17Nq1i1dffZWsrCz69+9fae4YIxQUFAAQHBxcaXlwcHDFZ/bcV1BQUJXlQUFBte6rsceutFQ/beLwYT0hWJs2Df4KTnXy5EnKy8vr9bsJDQ1l+fLlJCUlsWnTJiIiIhgwYAC7d+92Rsm1KigoqPa7nD9/npMnTxpU1a/sdezq3c9n1qxZzJ49u9Z1srKyiIqKqu+PBmD06NEV/925c2eioqIICwtj27ZtjBw50tDagCrTBCil6pw6oL71VbcfW/bVmGN34YKeAjU9XZ/x3HJLrau7pPr8biIiIoiIiKh4Hx0dTX5+PgsXLqRPnz4OrdMW1X2X6pYbwV7Hrt7hM3XqVMaMGVPrOuF2nLw3NDSUsLAwDh06VOe6jqwtJCQE0P8qhYaGViwvLCys8q9UY+v74osv+PHHH6t8duLECZv3BbYfO6XgiSdg40b497/hzjtt3oVLCAwMpEmTJlXOcurzuwF9abt27Vp7l1dvISEh1X6Xpk2bco2LzsjfkGNX7/AJDAwkMDCwvps1WFFREfn5+ZX+h6+JI2tr164dISEhpKSk0KVLF0C3NaSnpzN//nybfoat9UVHR2OxWPj000/p1q0bAHv37sVisdCzZ0+ba7b12M2ZA4sX6yeK1nGCVEViYiKJiYmUl5fXb0M78vPzIzIykpSUFO65556K5SkpKQwfPtzmn5OdnW3T3zNHi46OZuvWrZWW7dy5k6ioKHx9fQ2qqnYNOnaNaq6uw3fffaeys7PV7Nmz1W9+8xuVnZ2tsrOzVXFxccU6ERERatOmTUoppYqLi9WTTz6pMjIy1JEjR1RqaqqKjo5W1113nbJarYbWppRSr7zyijKZTGrTpk1q37596r777lOhoaF2r00ppQYNGqRuvfVWZTabldlsVrfccosaOnRopXXscezefFMpUOrFFxtXr9F3u/71r38pX19ftWLFCnXgwAEVHx+vrrzySnX06FGllFIzZ85UsbGxFeu/9tprKjk5WX399dfqyy+/VDNnzlSASkpKsnttxcXFFX+/ALVo0SKVnZ2tvvvuu2prO3z4sGrevLn6y1/+og4cOKBWrFihfH191XvvvWf32hpSn72OnUPDJy4uTgFVXqmpqb8WAGrlypVKKaV++eUXFRMTo6699lrl6+ur2rZtq+Li4lReXp7htSmlb7e/8MILKiQkRPn7+6s+ffqoffv22b02pZQqKipS48aNUy1atFAtWrRQ48aNq3Jrs7HHLilJqSuuUGrqVKUuXGhcvUaHj1JKJSYmqrCwMOXn56e6du2q0tPTKz6Li4tTffv2rXg/f/58dcMNN6iAgAB11VVXqV69eqlt27Y5pK6Lt6Yvf8XFxVVbm1JKpaWlqS5duig/Pz8VHh6uli5d6pDaGlKfvY6dDK/wUmlp+qmi99yjB4s2thOhDK8Q9eVyt9qF4+Xk6KeK9ukDq1e7fu9l4Znkr52X+fZbGDQIOnSATZvARSfOE15AwseLFBToSy2TCbZvhxYtjK5IeDOZTMxLWCwweDCcPQuffALXXmt0RcLbSfh4gbNnYcQIOHoUdu8GO/YBFaLB5LLLw5WVwZ/+BHv3wvvv23/YhMxkKBpKbrV7sPJyuP9+SEqCrVt1e4+jyK12UV9y2eWhlIJHHtHjtTZudGzwCNEQEj4eSCmYMQOWL4dVq/Q0qEK4Gmnz8UBz5+onTbz+up4mQwhXJOHjYd54A559Fl56ST9xQghXJeHjQVavhscfhyefhGeeMboaIWon4eMh/vUvmDABJk3Sl1wuMOGdELWS8PEASUn6lvr998OyZRI8wj1I+Li5LVtgzBjdkfCdd5w/Ql06GYqGkk6Gbmz7dj1sYvhwWL8emhrYcUI6GYr6kjMfN7Vzp55vecgQPRmYkcEjRENI+LihXbv02c7vfw8bNoCLzikuRK0kfNzMnj36Gep9+sB778lkYMJ9Sfi4EbNZX2b16AGbN0NAQNV1Tp06RWxsLCaTCZPJRGxsLKdPn671544fPx4fH59Krx49ejjkOwhxkbQUuImPP9aTgXXtqu9wNWtW/Xpjx47l2LFj7NixA4CHHnqI2NjYKs+ButygQYNYuXJlxXs/Pz+71S5EdSR83EBqKgwdCt2766kxrryy+vW++uorduzYQWZmJt27dwfgrbfeIjo6mtzc3EqPuL2cv79/xVNZhXAGuexycTt36kutXr30ZGA1BQ+A2WzGZDJVBA/ox9iaTCYyMjJq3U9aWhpBQUF06NCBSZMmUVhYWOv6JSUlWK3WSi8h6kPCx4Vt26YblwcMgP/8B5o3r339goICgoKCqiwPCgqq8uzvSw0ePJh169axa9cuXn31VbKysujfvz8lJSU1bjNv3ryKdiWTyUSbNm1s/l5CgISPy0pO1g/0GzIEunR5iWbNfKo0Cl/6+uyzzwDwqWZshVKq2uUXjR49mrvvvpvOnTszbNgwPvjgA77++mu2bdtW4zYJCQlYLJaKV35+fuO/tPAq0ubjgjZuhLFj9SRga9eCxTKFceNG1bpNeHg4X3zxBT/++GOVz06cOEFwcLDN+w8NDSUsLIxDhw7VuI6/vz/+cp9fNIKEj4tZu1ZPADZ2LKxcqXsuBwYGEhgYWOe20dHRWCwWPv30U7p16wbA3r17sVgs9OzZ0+YaioqKyM/PJzQ0tMHfQ4i6yGWXC1myBB54QIfPqlX1HzLRqVMnBg0axKRJk8jMzCQzM5NJkyYxdOjQSne6OnbsSHJyMgBnzpzhqaeewmw2c/ToUdLS0hg2bBiBgYHcc889dvx2QlQm4eMClIIXX4RHH4UnnoC334YmTRr2s9atW8ctt9xCTEwMMTEx3Hrrrbz77ruV1snNzcVisQDQpEkT9u3bx/Dhw+nQoQNxcXF06NABs9lMC3mkqXAgGdVusAsX4C9/0fMtv/wyPP20e87HI6PaRX1Jm4+Bysr07IPr1sHSpTB5stEVCeE8Ej4GOXtWTwD24Yd6Lp7Ro42uSAjnkjYfAxQVQUyMnhpj61b3Dh6ZyVA0lLT5ONnhw3qA6E8/6eDxlMHj0uYj6kvOfJzo00912Fy4oKfH8JTgEaIhJHycZMsW6NcPfvtbHTy//a3RFQlhLAkfJ0hM1OO0Bg+Gjz4CGzorC+HxJHwc6Px53Ydn6lTdeXDjxponARPC28itdgc5dUo/T+ujj3QHQnluuhCVSfg4QG4u/OEPcOIE7NihnzIhhKhMLrvsbMcOPd1pkyawd68EjxA1kfCxE6Vg0SK4+2495anZDDfeaHRVjiedDEVDSSdDOyguhokTdYPy9Okwd27DR6W7K+lkKOpL2nwa6csv4d574Ycf4N//1v8thKibXHY1wrvvQrdu4OcHn30mwSNEfUj4NMC5c3r6iwcegFGjIDMTOnQwuioh3ItcdtXTgQN6fuWDB+Gtt+DPf3bPyb+EMJqc+dhIKT3HcmQklJbqs52JEyV4hGgoCR8bnDgBw4frOZYnTNDtO7/7ndFVCeHe5LKrDlu2wEMPQXm5nn9n6FCjKxLCM8iZTw2KiuD++/UZz+23w759EjzVkU6GoqGkk2E1kpNhyhTdtvP66zBunLTt1EU6GYr6kjOfSxw7ph9RPHKkHp+1f78++5HgEcL+JHzQ8+4sWgSdOkFGhn6axObNIE8LFsJxvD58PvkEoqLgr3+FBx/U/XfGjJGzHSEczWvD55tv9HCIXr3A11dP7v7662AyGV2ZEN7B68KnqEhPbXrTTTpw3n1Xz7sTGWl0ZUJ4F6/p5/PLL7qH8pw5us/O7NkQHy9zKgthFI8Pn59/1qGzcKF+UN/EiTp4goKMrkwI7+ax4VNc/GvonD6tG5MTEqBdO6Mr8yyJiYkkJiZSXl5udCnCzXhcJ8PDh+GNN+Cdd+DsWT0WKyEBwsKMrsyzSSdDUV8eceajFKSlwT/+ocdiXX21HgT6yCNw/fVGVyeEqI5bh09eHqxZA6tX61vnN98My5fr4RDSkCyEa3O78DlxQo8u/+c/YdcuHTKjRumJvfr2lc6BQrgLt+jnc+iQbjju3RtCQvQdq/PndbtOQQGsWgX9+knwAMyZM4eePXvSvHlzWrVqZdM2SilmzZpF69atadasGf369WP//v2OLVR4PZcMn+PH9ZMgHnkEOnbU8yM/9xxcdZW+rDp+XLfxjB8PLVoYXa1rKS0tZdSoUUyZMsXmbRYsWMCiRYtYvHgxWVlZhISEMHDgQIqLix1YqfB2ht7tKi/XI8kPHNCzA158/fCD/vzGG6F/fxg0CAYOhCuvNKpS97Nq1Sri4+M5ffp0resppWjdujXx8fHMmDEDgJKSEoKDg5k/fz4PP/ywTfuTu12ivuze5lNQAPn5UFKin/JQUqI7+hUV6faaggJ9O/zwYTh6FMrK9HZXXaUHeD7wgP6ze3e5U+UMR44coaCggJiYmIpl/v7+9O3bl4yMDJvDR4j6snv4rFgBzz5bzY6aQmAgXHsttG+vZwW84Qb96tBBd/6TNhvnKygoACA4OLjS8uDgYL777rsatyspKaGkpKTivdVqdUyBwmPZPXwmTNDPKw8IAH9//WezZnq0uIRLw8yaNYvZs2fXuk5WVhZRUVEN3ofPZb8cpVSVZZeaN29enTUJURu7h09oqEzCZW9Tp05lzJgxta4THh7eoJ8dEhIC6DOg0Et+cYWFhVXOhi6VkJDAtGnTKt5brVbatGnToBqEd3K7fj7eKDAwkMDAQIf87Hbt2hESEkJKSgpdunQB9B2z9PR05s+fX+N2/v7++Pv7O6Qm4R1c8la7aLi8vDxycnLIy8ujvLycnJwccnJyOHPmTMU6HTt2JDk5GdCXW/Hx8cydO5fk5GS+/PJLxo8fT/PmzRk7dqxRX0N4ATnz8TDPP/88q1evrnh/8WwmNTWVfv36AZCbm4vFYqlYZ/r06Zw9e5ZHHnmEU6dO0b17d3bu3EmLenSiatGiBRaLpV7bCO/mcaPahRDuQS67hBCGkPARQhhCwkcIYQgJHyGEISR8hBCGkPARQhhCwkcIYQgJHyGEISR8hBCGkPARQhhCwkcIYQgJHyGEIf4fLY7HEIiS5QIAAAAASUVORK5CYII=\n", "text/plain": [ "Graphics object consisting of 1 graphics primitive" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "p = plot(sin(x), (x, -pi/2, pi/2))\n", "a = 34\n", "b = a^2\n", "p.show(figsize=3)" ] }, { "cell_type": "markdown", "id": "6ccdb692", "metadata": {}, "source": [ "Cambiemos el color y nombremos los ejes. Después el grosor y el tipo de línea." ] }, { "cell_type": "code", "execution_count": 41, "id": "bc769908", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAASEAAADXCAYAAABVoeerAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAnwElEQVR4nO3de1wU9f4/8NdyW0RgFZGbN8CjiCKIoIKmeAkwRUNN8UbgKZWyPMrpeKm+pZm3TlmdpNLyqIgXUsQ0EkHlYoqCBnhFULmJ3AUWBHZh+fz+8OeeVm4L7DK78H4+HjxqZ+Yz895BX35m5jMzYKRLi4mJYQCYm5ubwtcdERHBALDt27d3eF0HDx5kANhPP/2kgMqIOuExxhhIlxUbG4spU6bAzc0NsbGxCltvQ0MDRo0ahby8PGRlZcHAwKBD66uvr4eNjQ1qa2uRkZEBPT09BVVKVJ0G1wUQ5dLT04ONjQ0GDhyo0PUePnwYt27dwurVqzscQACgpaWFdevW4cmTJ/juu+8UUCFRF9QTIu0ybtw4JCYm4tGjR7CyslLIOisqKmBqagozMzM8evQIGhr0b2R3QL9l0mY3b95EYmIiXFxcFBZAACAQCDB9+nRkZ2cjOjpaYeslqo1CSE1lZ2dj5cqVsLa2Bp/Ph4GBAaytrTFnzhwcO3ZMulxsbCx4PB4mT54s0z4rKws8Hg+WlpYAgJCQEDg7O0NPTw9GRkaYP38+Hj161OS2X6x/5syZjealp6ejZ8+e0NTURFxcXKP5RUVFMDExAY/Hw5EjRxrN9/LyAgCEhobKtR9IF8DteXHSHpmZmczY2JgBYHp6emzkyJFs1KhRzMjIiAFgDg4O0mWbuzqWmZnJALBBgwaxDRs2SP/fwcGB8fl8BoCZm5uz4uLiRtufMGECA8DOnTvXZH1BQUEMABs4cCArLy+XmTdr1iwGgPn4+DTZNjU1lQFggwcPbttOIWqLQkgNvffeewwA8/PzY5WVlTLz7t27x/bs2SP93FoIaWlpMUNDQ/b7779L5+Xn5zN7e3sGgK1fv16mnVgsloZUSUlJszVOnz6dAWBLly6VTtuzZw8DwPr168eePn3aZLv6+nrWo0cPBoDl5+e3ui+I+qMQUkOenp4MAEtNTW112dZCCAD76quvGrU7ffo0A8Ds7e1lpufk5DAATEdHp8XtPnnyhPXp04cBYKGhoezBgwdMX1+f8Xg8FhUV1WLbQYMGMQDs6tWrrX4/ov7onJAaGjBgAADgxIkTYAq4uPnWW281mjZmzBgAaHReqKSkBADQu3fvFtdpbm6OPXv2AAACAgLg4+ODqqoqvP/++3B3d2+xrZGREQCguLhYvi9A1BqFkBpatWoVtLW1sWXLFlhZWSEgIACHDx/GkydP2rwuY2NjCASCRtNNTEwAAFVVVTLTa2trAQB8Pr/Vdc+bNw++vr4oKyvDjRs3YGtri507d7barkePHgCAmpqaVpcl6o9CSA2NGjUK8fHx8PDwQF5eHvbs2YOlS5eif//+8PT0xL179+ReV8+ePZuc3twYnRe9lPLycrnWP3XqVOn/L1q0CLq6uq22efr0KYDnAUm6PgohNeXi4oJz586hrKwMkZGRWL9+Pfr374+oqCi4u7vLHRJt9aKHJBQKUV9f3+KyeXl5CAwMBADweDzs2LED6enprW7jRQj17du3g9USdUAhpOb09fXh6emJHTt2IC0tDYMHD0ZeXh7Onj2rlO317t1begtIWlpas8sxxuDv74+ysjK8/fbbCAwMRHV1NXx9fVsMr9LSUhQVFUlvNyFdH4VQF6Knp4eRI0cCQLvOD8nrlVdeAQBcv3692WW+++47nD9/HlZWVvj666+xdetW2NnZITExEdu2bWu2XWJiIoDnPT1tbW3FFk5UEoWQGnrnnXcQGhqK6upqmenx8fG4cOECAGD06NFK276HhwcA4I8//mhyflpaGjZs2AANDQ0EBwdDX18ffD4fISEh0NHRwZYtW5oNsMuXL8tsg3QDXI8RIG3n4OAgHWhoa2vLxo4dKx1bg5cGCMozYro5L9b3smfPnjFDQ0NmZGTERCKRzDyxWMycnJyaHOjIGGM7duxgAJiNjQ2rrq5uNH/IkCFMS0uLPXnypJW9QLoK6gmpoa+//hr/+Mc/YG9vj5KSEqSkpAAAPD09cfr0aQQHByt1+3p6eliyZAmePn2KyMhImXmfffYZbty4AXt7e3z22WeN2v7rX//CxIkTcf/+faxbt05m3vXr15GRkYGZM2fC3Nxcqd+BqA56lAdpl8zMTAwbNgwTJ07E+fPnFbJOPz8/BAcH49q1axg7dqxC1klUH/WESLtYWVnh3XffxYULF3DlypUOr+/Ro0c4cuQI5s+fTwHUzWhxXQBRXx9//DEEAoF0XE9HPH78GB999BH8/PwUUBlRJ3Q4RgjhFB2OEUI4RSFECOEUhRAhhFMUQoQQTlEIEUI4RSFECOEUhRAhhFMUQoQQTlEIEUI4RSFECOEUhZAaio+Px6xZs2BhYQEej4dTp0612iYuLg5OTk7Q1dWFtbU1fvzxxzZtkzEGoVCokFcMEfJXFEJq6NmzZ3BwcMDu3bvlWj4zMxMzZszAxIkTkZycjA8//BCrV69GWFiY3NusrKyEQCBAZWVle8smpEl0A6ua4/F4CA8Ph7e3d7PLrF+/HqdPn5Z5FVBAQABSU1ORkJAg13aEQiEEAgEqKipgaGjY0bIJkaJHeXQDCQkJjZ7Z7OnpiX379qGurq7JB8qLRCKIRCLpZ6FQqPQ6ieI11DdAmCeE8LEQteW1EFWInv9XKIKkTgImYRg+fzhMRphwViOFUDdQUFAAU1NTmWmmpqaor69HSUlJk49S3b59OzZv3txZJZIOqimrQUFKAQpSClB0qwjlmeUozypHRW4FmET2YEdDSwN8Qz40dTShoaUBizEWFEJE+Xg8nsznF0fhL09/YePGjdIXFwLPe0IDBgxQXoFEbowxlKSVIDsuG1mxWXh89TEqsisAAFo9tGBiZwKjwUbo59IPvSx7oZdlLxj2N0QPox7QFehCq4dWs793LlAIdQNmZmYoKCiQmVZUVAQtLS306dOnyTZ8Pl+u982TziESivDg3AOkn07Hw6iHeFb0DDxNHvqN6YfhbwyHmaMZzB3N0WdoH2hoqdf1JgqhbsDV1RVnzpyRmRYVFQVnZ2d6waAKqy6txt0Td5F2Mg2ZMZloqGuAqb0pRv19FKymWGHA+AHQ0dfhuswOoxBSQ1VVVXjw4IH0c2ZmJlJSUmBkZISBAwdi48aNyMvLk776JyAgALt370ZgYCCWL1+OhIQE7Nu3D0ePHuXqK5Bm1IvqkX4mHTdDbiLj9wywBgZLN0t4fOkBm9k26GXZi+sSFY4u0auh2NhYTJkypdF0Pz8/HDhwAP7+/sjKykJsbKx0XlxcHNauXYs7d+7AwsIC69evR0BAgNzbpEv0yvX04VPc2HMDKftTUF1SDYsxFrBfao8RPiOgb6rPdXlKRSFE5EIhpHiMMTw89xBXv7mKh+ceQreXLhz8HeC0wgl9bftyXV6nocMxQjpZQ30D7vxyB5e/uIzC1EKYO5lj9n9nw87HDtp63e8cHYUQaVFQUBCCgoIgkUi4LkXtScQS/Pnzn7jy7ysozyrHYM/B8PzaE5aTLVXqknlno8MxIhc6HGu/BkkDbobcRNymOJRnl8POxw4T1k+A2SgzrktTCdQTIkRJWAPDvZP3EPNJDErulcB2ri0W/baI09HJqohCiBAlyEvMw9nVZ5F3LQ+DPQbD+6A3+o3px3VZKolCiBAFqiqowoWNF5ByIAWmDqZ48+KbsJpixXVZKo1CiBAFkIgluPrtVcRviYemjiZm/jATo5ePhoamet1CwQUKIUI6KPdKLk6/fRql6aUY8+4YTN40GT2MenBdltqgECKknUSVIlz48AKSgpLQb2w/rExeCdORpq03JDIohEiLaJxQ0zLOZiAiIALVJdXw3OWJse+PpUOvdqJxQkQuNE7ouZqyGkSujsTNkJsY7DEYXnu8uuRNpZ2JekKEyCkzJhOn3jwFcZUY3ge9Ye9r361HOisKhRAhragX1ePixxeR8FUCLCdbwvugNwQDBFyX1WVQCBHSgqLbRTi55CRK0krg/m93uK51BU+Dej+KRCFESBMYY7j+43WcW3sORn8zwtuJb8PMge71UgYKIUJeIq4S48yKM7h99Dac33WG51ee0NKlvyrKQnuWkL8oul2E4/OPQ/hYiHnH5sHOx47rkro8GthAWhQUFIThw4djzJgxXJeidKnBqfhp7E/Q0NLA8uvLKYA6CY0TInLpyuOE6kX1OPv+Wfz5058Y5T8KM4JmdMsnHHKFDsdIt1aZX4lf5v2C/D/zMXvfbDj+3ZHrkrodCiHSbeUl5iF0TigAYFn8MvQbS8/74QKFEOmWUg6m4LeVv8Hc0RwLTi6AgbkB1yV1WxRCpFtpkDQg+l/RuPr1VTi+5YgZQTOgxae/BlyivU+6DXGVGGGLw5ARkYHp307H2PfH0r1fKoBCiHQLwsdCHJ11FE8fPMWiM4swZMYQrksi/x+FEGlRV3ieUH5yPo56HQVPk4e/X/47TO3pwWOqhMYJEbmo6zihjN8zcHz+cfQd3hcLTy+kE9AqiHpCpMtK3p+MM8vPYKjXUMw7Mo8GIKooCiHS5TDG8MeOP3Dxw4sYvWI0ZgbNhIYW3aGkqug3o6a+//57WFlZQVdXF05OTrh06VKzy8bGxoLH4zX6SUtL68SKO0eDpAGR/4jExQ8vwu1TN3j96EUBpOKoJ6SGQkNDsWbNGnz//feYMGEC9uzZg9deew13797FwIEDm213//59mfM5ffv27YxyO029qB7hvuG4F3YPM3+YCecAZ65LInKgE9NqaNy4cRg9ejR++OEH6TRbW1t4e3tj+/btjZaPjY3FlClTUFZWhl69erVrm6p+Yrq2ohah3qHITcjFvKPzYDvHluuSiJyon6pmxGIxbty4AQ8PD5npHh4euHLlSottHR0dYW5ujmnTpiEmJqbFZUUiEYRCocyPqqoqqMIBtwMoSCmAb7QvBZCaoRBSMyUlJZBIJDA1lR3rYmpqioKCgibbmJubY+/evQgLC8PJkydhY2ODadOmIT4+vtntbN++HQKBQPozYMAAhX4PRSnPLsf+iftRXVyNZZeWYdDEQVyXRNqIzgmpqZdvN2CMNXsLgo2NDWxsbKSfXV1dkZubiy+//BKTJk1qss3GjRsRGBgo/SwUClUuiErTSxH8ajA0tDSw7I9l6G3Vm+uSSDtQT0jNGBsbQ1NTs1Gvp6ioqFHvqCUuLi7IyMhodj6fz4ehoaHMjyopvFmI/RP3Q0dfB8suUQCpMwohNaOjowMnJydER0fLTI+Ojsb48ePlXk9ycjLMzc0VXV6neHztMQ64HYBhf0Msi18Gw36qFZCkbehwTA0FBgbC19cXzs7OcHV1xd69e5GTk4OAgAAAzw+l8vLyEBwcDAD45ptvYGlpiREjRkAsFiMkJARhYWEICwvj8mu0S2ZMJo7OOgqzUWZYHLEYugJdrksiHUQhpIZ8fHxQWlqKzz77DPn5+bCzs8Pvv/+OQYOen5TNz89HTk6OdHmxWIwPPvgAeXl56NGjB0aMGIGIiAjMmDGDq6/QLg+jH+LY7GMYOHEgfMJ9oNNTh+uSiALQOCEiF67HCT049wDHXj8G62nWWBC2gN4D1oXQb5KovIyzGQidE4rB7oMx/8R8ehJiF0MnpkmLuH7vWPpv6Qj1DsXfPP9GAdRF0eEYkQsXh2P3T9/HL2/8gqFeQ/HGsTegqaPZKdslnYv+WSEqKe1UGo4vOA6b2TaYd3QeNLUpgLoqOhwjKufeyXs4Pv84hnkPowDqBiiEiEq5e+Iuji84Dtt5tph3hAKoO6DDMaIy7hy/g7BFYbDzsYP3QW96GFk3Qb9lohLSTqU9D6CFdvAOpgDqTug3TTiXHpH+/BBsri28D3hDQ5P+WHYn9NsmLVL2OKGH0Q/xy7xfMGTGEMw9PJd6QN0QjRMiclHGOKGsuCwcfu0wrKZYYcHJBTQQsZuif3YIJ3Iu5+DIzCMYOGHg83vBKIC6LQoh0unyEvNw+LXDsHCywMJfF9LNqN0chRDpVPnJ+QjxDIGJnQkW/baI3opKKIRI5ym8VYhD7odgNMQIS84uAd+Az3VJRAVQCJFOUZpRikPuhyAYIMDSc0vpiYhEikKIKF1FTgUOvXoIPXr3wNKopejRuwfXJREVQiFEWtTRcUJVhVU45H4IPA0efM/7omffngqukKg7GidE5NKecUI1ZTU4OPkgnhU/w7JLy2A02EjJVRJ1RNdGiVKIq8Q4MuMIhI+F8I/3pwAizaLDMaJw9bX1OOZ9DEV3irAkcglMRphwXRJRsrfffhs8Hg/u7u5o6uDqk08+AY/Hw8iRIyESiWTmUQgRhZLUSXBi4QnkXs7FojOL0G9MP65LIp3gm2++gbW1Nc6fP49vv/1WZt61a9ewbds26OjoICQkBHy+7NAMCiGiMKyB4ddlvyIjIgMLwhbA0s2S65JIJ9HX18ehQ4egqamJjRs34s6dOwCA6upq+Pr6QiKRYMuWLXBwcGjUlkKIKARjDBGrInD76G3MPTwXQ2YM4bok0snGjx+PdevWoba2FkuXLoVYLEZgYCAyMjIwadIkfPDBB022o6tjRC6tXR07v+E8Lu+8jFk/z8Lot0ZzUCFRBXV1dRg3bhySk5Ph7u6O6OhoGBoa4ubNm9I3BL+MekKkRfKME7q0/RIu77wMj10eFEDdnLa2NkJCQqCrq4vo6GgAwH/+859mAwignhCRU3M9ocSgRJx97yzcNrlh8qeTuSuQqAyxWIyRI0ciPT0dAoEAjx8/hr6+frPLU0+ItFtqcCrOvncWLmtd4PaJG9flEBXx0UcfIT09HRoaGqioqMDatWtbXJ5CiLTLvfB7+HXZr3B8yxEeX3mAx+NxXRJRAfHx8di1axf09PQQHR2NXr164eeff8aZM2eabUMhRNrsYfRDhC0Mw/A3hsNrjxcFEAHw/JDdz88PDQ0N+Pe//42pU6ciKCgIwPPBjMXFxU22oxAibZJ7NReh3qGwftUacw7NoTdjEKnVq1cjKysLHh4eePfddwEAixcvho+PD4qKirBixYom29GJaSKXFyemPzX8FJaOllhydgm0e9BTEclz4eHhmDt3Lnr37o3bt2/DwsJCOq+srAx2dnZ48uQJ/vvf/2LZsmUybTscQowxVFZWdmQVRAWJRCKZe3xyb+Zi/Mzx2Gm/E8siloFvSE9F7MoMDAzkPswuLCyEnZ0dSkpKcPToUSxcuLDRMlFRUZg+fTr09fVx8+ZNWFpaSud1OIRe/AtJCOk6FPlqp9YotCc0ZswYJCUlNbmcUCjEgAEDkJub2+SXa6lta/Pb27a1mpS13dbmqcK+etETqi6uRvi8cDwTPcOWJ1tw9+5d9OvX9E2p6ravVLEmZdXc1j/rbekJdVSHnyfE4/GkX0pTU7PV9DQ0NGxymdbatjS/I21bqkmZ21WHfVVTVoPfvH6DVq0WfI77YMsrW2BgYNBl9pUq1qTMmluqSZ62yqLQh5qtWrVKaW1bmt+Rtq1R1nZVfV+Jn4lxZOYRCHOF8I/zh7iXuEN1qeK+UsWaOrpdZdalLJ12dUwZrxHuKFWsCeC+rnpRPY7OOorHCY/x5sU30W9MPzx+/Fjane/fv3+n19QcrvdVU6imtum0QR58Ph+ffvppowcacUkVawK4rauhvgEnF59Edny2zEPJXtRC+6p1VFPb0DghIsUaGE6/dRo3Q27CJ9wHQ72GSuep8r+kRL3RcFcC4PlVzsi1kUg5mALvYG+ZACJEmSiECAAgdlMsEv+TiJnfz8TIRSOl0zv63jFCWkOHYwQJuxIQ9c8oTNsxDa+sf6XJZehwjCgL9YS6uT/3/Ymof0ZhwoYJzQYQIcqk1BDaunUrxo8fDz09PfTq1UuuNv7+/uDxeDI/Li4unNbEGMOmTZtgYWGBHj16YPLkydK3CShCWVkZfH19IRAIIBAI4Ovri/Ly8hbbKGI/3Tl+B7+t+A1OAU6Ytm1aB76B8nz//fewsrKCrq4unJyccOnSpWaXjY2NbbRPeDwe0tLSFFZPfHw8Zs2aBQsLC/B4PJw6darVNnFxcXBycoKuri6sra3x448/Kqye9tbVGftKXkoNIbFYjPnz5+Odd95pU7vp06cjPz9f+vP7779zWtMXX3yBXbt2Yffu3UhKSoKZmRnc3d0VduPu4sWLkZKSgsjISERGRiIlJQW+vr6ttuvIfnoQ+QAnl5yE3UI7zAyaqZLPBAoNDcWaNWvw0UcfITk5GRMnTsRrr72GnJycFtvdv39fZr8MGaK4N388e/YMDg4O2L17t1zLZ2ZmYsaMGZg4cSKSk5Px4YcfYvXq1QgLC1NYTe2p6wVl7iu5sU6wf/9+JhAI5FrWz8+Pvf7660qthzH5a2poaGBmZmZsx44d0mm1tbVMIBCwH3/8scN13L17lwFgV69elU5LSEhgAFhaWlqz7Tqyn7IvZbPPe3zOjngdYfXiernaVFRUMACsoqKiXdtsj7Fjx7KAgACZacOGDWMbNmxocvmYmBgGgJWVlXVCdYwBYOHh4S0us27dOjZs2DCZaStXrmQuLi6c1tXZ+6olKnlOKDY2FiYmJhg6dCiWL1+OoqIizmrJzMxEQUEBPDw8pNP4fD7c3Nxw5cqVDq8/ISEBAoEA48aNk05zcXGBQCBodf3t2U95SXk4POMw+o/rjzd+eQOa2pod/g7KIBaLcePGDZn9DgAeHh6t7hdHR0eYm5tj2rRpiImJUWaZrUpISGj0HTw9PXH9+nXU1dVxVNX/qMK+UrkQeu2113D48GFcvHgRX331FZKSkjB16tRG76/uLAUFBQAAU1NTmemmpqbSeR1dv4lJ43e1m5iYtLj+9uyngtQChHiGwMTOBAtPL1Tph5KVlJRAIpG0ab+bm5tj7969CAsLw8mTJ2FjY4Np06YhPj6+M0puUkFBQZPfob6+HiUlJRxVpVr7qs03sG7atAmbN29ucZmkpCQ4Ozu3qyAfHx/p/9vZ2cHZ2RmDBg1CREQE5s6dy0lNABqdM2GMtXgeRd6amlq3POtv634qvleMQ+6H0NuqN5b8vgR8A/mG7wcFBSEoKAgSiUSu5RWtLfvdxsYGNjY20s+urq7Izc3Fl19+iUmTJim1zpY09R2amt6ZVGlftTmE3nvvvSafnPZXf31qWkeZm5tj0KBByMjI4KQmMzMzAM//RTM3N5dOLyoqavQvXHtqunnzJgoLCxvNKy4ubnH9L2tpPz198BTB04Khb6qPpVFLodtLV+71rlq1CqtWrer0h9cZGxtDU1OzUa+ntf3+MhcXF4SEhCi6PLmZmZk1+R20tLTQp08fjqpqGlf7qs0hZGxsDGNjY2XU0qTS0lLk5ubKBEBn1mRlZQUzMzNER0fD0dERwPPzFXFxcdi5c2eHa3J1dUVFRQUSExMxduxYAMC1a9dQUVGB8ePHy11nc/upPLscwdOCwTfgw/e8L/T66Mm9Ti7p6OjAyckJ0dHRmDNnjnR6dHQ0Xn/9dbnXk5yc3OKfHWVzdXVt9LqbqKgoODs7Q1tbtQ6HOdtXyjzrnZ2dzZKTk9nmzZuZvr4+S05OZsnJyayyslK6jI2NDTt58iRjjLHKykr2z3/+k125coVlZmaymJgY5urqyvr168eEQiEnNTHG2I4dO5hAIGAnT55kt27dYosWLWLm5uYKq2n69OnM3t6eJSQksISEBDZy5Ejm5eUls0x79pMwT8i+Hfwt+8bqG1aR27GrWlxcHTt27BjT1tZm+/btY3fv3mVr1qxhPXv2ZFlZWYwxxjZs2MB8fX2ly3/99dcsPDycpaens9u3b7MNGzYwACwsLExhNVVWVkr/zABgu3btYsnJySw7O7vJmh49esT09PTY2rVr2d27d9m+ffuYtrY2O3HihMJqak9dnbGv5KXUEPLz82MAGv3ExMT8rwCA7d+/nzHGWHV1NfPw8GB9+/Zl2trabODAgczPz4/l5ORwVhNjzy/Tf/rpp8zMzIzx+Xw2adIkduvWLYXVVFpaypYsWcIMDAyYgYEBW7JkSaNLp23dT1WFVWz3sN1sV/9drCxTdl3twUUIMcZYUFAQGzRoENPR0WGjR49mcXFx0nl+fn7Mzc1N+nnnzp1s8ODBTFdXl/Xu3Zu98sorLCIiQqH1vLi0/fKPn59fkzUxxlhsbCxzdHRkOjo6zNLSkv3www8Krak9dXXGvpIX3TvWBdU8rcHBqQfxrPAZ/OP90WdIx8890L1jRFlU7hI96ZjailqETA+B8LEQvud9FRJAhCgThVAX8uK50KXppfCN9oXJiMbjjwhRNRRCXURddR2OzT6GwtRCLI1cCnNHxVzloOcJEWWjc0JdQF11HY7Ofv5g+iVnl2DQpEEK3wadEyLKQj0hNdcZAUSIMlEIqTEKINIVUAipKQog0lVQCKkhCiDSlVAIqRkKINLVUAipEQog0hVRCKkJ8TOx9P3wnRlANE6IKBuNE1IDtRW1ODLzCApTC7E4YjEnPSAaJ0SUpc3PEyKdq7q0GiGeISh7WAbf877oP64/1yURolAUQiqsqqAKh9wPoaqwCn6xfjBzMOO6JEIUjs4JqaiK3Arsn7QfNU9r4B/nLw0grl6USIiyUE9IBT19+PyZ0DweD8suLUNv697SeYsXL8bjx48RGRkJAFixYgV8fX0bPUL0ZdOnT8f+/fuln3V0dJRTPCFtRCGkYorvFiP41f89E1ow4H8Pl7937x4iIyNx9epV6XvKfvrpJ7i6uuL+/fsyb094GZ/Plz60nxBVQodjKiQ/OR8H3A5Ar48e/OP9ZQII6NwXJYpEIgiFQpkfQpSBQkhFZF7MxAG3A+hl1Qt+sX7QN9VvtExnvihx+/bt0vNOAoEAAwYMaN8XI6QVdDimAjbN3wTJCQmykIVfkn7BCuMVjZbpzBclAsDGjRsRGBgo/SwUCimIiFJQCHEscXcieGE8DJ41GAs/X4iPdD5qcrnOelHiC3w+H3y+fG9pJaQjKIQ4whhDzP/F4NLWS3BZ6wKPLz3A02j5tcDKflEiIVygc0IcaKhvwJnlZ3Bp6yW8+sWr8Piq9QACAFtbW0yfPh3Lly/H1atXcfXqVSxfvhxeXl4yV8aGDRuG8PBwAEBVVRU++OADJCQkICsrC7GxsZg1axaMjY1l3mxKCFeoJ9TJ6qrrELYoDOkR6fA+6A2HNx3a1P7w4cNYvXo1PDw8AACzZ8/G7t27ZZa5f/8+KioqAACampq4desWgoODUV5eDnNzc0yZMgWhoaEwMDBQzJcipAPoBtZOVJlfiWOzj6H4XjHm/zIfQ2YM4bokudENrERZqCfUSQpSC3DU6ygYY1h2aZnCXslDiLqjc0KdID0iHftf2Q+9vnp4+9rbahVA9Dwhomx0OKZk1767hnNrzmGo11DMPTwXOvrqec8WHY4RZaHDMSVpqG9A5NpIJO1OgkugC9y/cIeGJnU8CXkZhZAS1DytwYmFJ5B5MRMzf5wJ55XOXJdEiMqiEFKwwluFCPUORW1FLZaeWwrradZcl0SISqMQUqA7x+/gV/9f0WdoH7x54U30suzFdUmEqDwKIQVokDTg4scXcXnHZdgtssPsn2dDW0+b67IIUQsUQh1UVVCFsMVhyI7LhvuX7nANdG3xjnZCiCwKoQ7IvJiJsMVh4PF4ePPCm7CcbMl1SQoXFBSEoKAgSCQSrkshXRSNE2qHBkkDLm27hLhNcbCcYom5h+c2+RCyroTGCRFloZ5QG1U+qcQp/1N4dP4R3D51w6SPJ9H4H0I6gEKoDe6dvIczy89AU0cTvlG+sH6VLr8T0lEUQnIQCUWI/EckUg6kwHauLbz2eEHPWI/rsgjpEiiEWpFzOQfhvuGoLq7G7P/Oxij/UXT1ixAFohBqRl1NHWI3xSLhywT0d+mPN8+/KfMSQkKIYlAINSErNgtnlp9BRW4Fpnw+BRP+NQEaWnTymRBloBD6i9qKWkSvi8afe//EwFcGYtFvi2BsY8x1WZyicUJE2WicEJ6/+eL20duI+iAK4koxXv3iVTivdJbr4fPdBY0TIsrS7XtChbcKcfa9s8iOz8bwN4bDY5dHo9cvE0KUp9uGUHVpNeI+i0NSUBKM/maEpVFLMdh9MNdlEdLtdLsQqqupw7Vvr+GPHX+ASRimbZ8Gl3+4QFNHk+vSCOmWuk0INUgakBqcipj/i8GzwmdwCnCC2/+5oadJT65LI6Rb6/Ih1FDfgFtHbuHS1ksoTS/FiAUjMHXrVBj9zYjr0ggh6MIhJBFLkHooFX9s+wNlj8pgM9sGcw/PhYWzBdelEUL+osuFUHVJNW7svYGk75NQmVcJ23m2WBC2AGajzLguTS3ROCGibF1mnFDhzUJc+8813Dp8CwAwculIuKxxgckIE44r6xponBBRFrXuCdWU1eD2sdtIPZCKvMQ8GPQzwKRPJsFpuRPd5U6ImlC7EKqrqcPDqIe4feQ20k6loUHSgCGvDcH8E/NhM9sGmtp0qZ0QdaIWIVTztAYZZzOQFp6GB2cfoK66DiYjTTB121TYL7GHvlnXfrTqX23duhURERFISUmBjo4OysvLW23DGMPmzZuxd+9elJWVYdy4cQgKCsKIESOUXzAhrVDJEBI/EyPnUg4eXXiEzAuZKEgpABhgMcYCEz+eCNs5tjAe1j1vLBWLxZg/fz5cXV2xb98+udp88cUX2LVrFw4cOIChQ4fi888/h7u7O+7fvw8DAwMlV0xIyzg9Mc0YQ3VxNUrTS1GQWoD8G/l4cv0Jiu8UgzUwGFgYwGqqFaymWcH6VWsY9qcToi8cOHAAa9asabUnxBiDhYUF1qxZg/Xr1wMARCIRTE1NsXPnTqxcuVKu7dGJaaIsCu8JScQSFN0ugkQsgUQsQb2oHiKhCM+KnqG6uFr637LMMpSml0JUIQIAaGhpwNTeFP1d+2Ps+2MxaOIg9LHpQ08x7KDMzEwUFBTAw8NDOo3P58PNzQ1XrlyRO4QIURaFh1BVQRX2Ou1tNJ2nyUPPvj3R06Qn9PrqwWSkCWzn2qLP0D4wGmKEPkP6QEtXJY8O1VpBQQEAwNTUVGa6qakpsrOzm20nEokgEomkn4VCoXIKJN2ewv/W65vpY8WNFdDU0YQmXxOaOprgG/Ch20uXns/TjE2bNmHz5s0tLpOUlARnZ+d2b+PlHiVjrMVe5vbt21utiRBFUHgIaepowny0uaJX26W99957WLhwYYvLWFpatmvdZmbPR4oXFBTA3Px/v5eioqJGvaO/2rhxIwIDA6WfhUIhBgwY0K4aCGkJHf+oAGNjYxgbK+dqn5WVFczMzBAdHQ1HR0cAz6+wxcXFYefOnc224/P54PP5SqmJkL+ip7ermZycHKSkpCAnJwcSiQQpKSlISUlBVVWVdJlhw4YhPDwcwPPDsDVr1mDbtm0IDw/H7du34e/vDz09PSxevJirr0GIFPWE1Mwnn3yCgwcPSj+/6N3ExMRg8uTJAID79++joqJCusy6detQU1ODd999VzpYMSoqqk1jhAwMDFBRUUHjiojCdZkbWAkh6okOxwghnKIQIoRwikKIEMIpCiFCCKcohAghnKIQIoRwikKIEMIpCiFCCKcohAghnKIQIoRwikKIEMIpCiFCCKf+H9Q6vqX3MWkPAAAAAElFTkSuQmCC\n", "text/plain": [ "Graphics object consisting of 1 graphics primitive" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "p = plot(sin(x), (x,-pi/2, pi/2), axes_labels=['x','sin(x)'], color='purple')\n", "p.show(figsize=3)" ] }, { "cell_type": "code", "execution_count": 42, "id": "9c6b2cee", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAR8AAADWCAYAAADox4aFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAghUlEQVR4nO3de1hVVd7A8e+RyyFTTypy0VGwVCwvvYil2JSVE4rpqDXlbQibXie1psiaRqcaNS9oqaOTqNn4aqZ5abCyR2NkJtASTDQYLRNtImVMRE0PjCkorPePlSgC5wLnxjm/z/PsR8/ea5/zOxv9sfba62JQSimEEMLFmrg7ACGEb5LkI4RwC0k+Qgi3kOQjhHALST5CCLeQ5COEcAtJPkIIt5DkI4RwC0k+Qgi3kOQjHEIpRUlJCdJhXthKko+X2blzJ0OHDqVt27YYDAY++OADq+fs2LGDmJgYgoKCuPnmm1m+fLndn1taWorJZKK0tLQeUQtPVVEBRUXwxReQmQlbt8KmTbBqFSxdCt9/X//39ndYlMIjnD9/nttvv53HH3+chx9+2Gr5goICBg8ezPjx41m7di27du1i0qRJtGnTxqbzReOnFBw7phPMwYNw+LDe/vMfOHFCJ6C6dO8ObdvW73Ml+XiZ+Ph44uPjbS6/fPlyOnTowKJFiwC49dZb2bt3L/Pnz5fk46VKSmDnTti9G/buhX374PTp+r1XZWX945Dk4+Oys7OJi4urtm/gwIGsXLmSS5cuERAQUOt5ZWVllJWVVb0uKSlxapyi/ioqYNcu2L4d/vlPyMmxXJuxR0Oa+CT5+LiioiJCQ0Or7QsNDeXy5cucPn2a8PDwWs9LTk5mxowZrghRNMDvfgcbN8KpU855/4YkH2lwFhgMhmqvrzyxun7/taZOnYrZbK7aCgsLnRqjqJ+CAuclHmjYbZckHx8XFhZGUVFRtX3FxcX4+/vTunXrOs8zGo20aNGi2iY8z0MPOff95bZL1FtsbCwfffRRtX3bt2+nd+/edbb3iMZj6FBo0qT+NRQ/PwgLg3btIDgYbrwRmjXTf95wA0RE1D82ST5e5r///S/ffPNN1euCggLy8vJo1aoVHTp0YOrUqRw/fpw1a9YAMGHCBJYsWcLkyZMZP3482dnZrFy5kvXr17vrKwgLLl2CixeheXPbyrdpA/fco/voWNK0KfTqBTEx+vF5ly7QqROEhuoE5BRKeJWMjAwF1NgSExOVUkolJiaq/v37VzsnMzNTRUdHq8DAQBUZGamWLVtm9+eazWYFKLPZ7IBvIa534YJSS5cqFRGh1OTJ9p27eLFS+gbp6ta+vVLjxim1apVSX32l1OXLzojaMoNS0h9eNFxJSQkmkwmz2SztPw504QIsWwbz5+sOf6BrKUeP6tsgWxQWwi23QP/+MHw4xMXpWo2F5wkuIbddQnigigp45x145RXd0/haP/4IixbBrFm2vVf79roToaf9TpCnXUJ4EKX0+Kn/+R94/PGaieeKJUvAbLb9fT0t8YAkH9FAKSkp3Hbbbdxxxx3uDqXR++ILuO8+GDIEvvzSclmzGVJSXBOXs0ibj3AIafOpv3Pn9O3V0qX2PRIPDobvvtOPvRsjafMRwk2Ugnffheefh5Mn7Tu3SxeYOhUCA50TmytI8hHCDb7+GiZNst7/5no9esBLL8GvfuXE/jcuIslHCBcqL4fZsyE5WXcYtFVEhH66NWaM7rHsDST5COEiubkwbhzs32/7Oa1a6ZrOpEkQFOS00NxCko8QTnaltjNnDly+bNs5AQHw3HO6Xeemm5wanttI8hHCiQ4f1rdK+/bZfs6AAfoxelSU8+LyBF5y9yiEZ1FKT7Leq5ftiScsDNavh/R07088IMlHNJB0Mqzd0aMwYQKcP2+9bJMm8OyzcOgQjBrl/jFXriKdDIVDSCfDmhYvhqQky2W6d4fVq/VUFr5Gaj5COMkzz0BdC4n4+cHLL+vVI3wx8YAkHyGcxmDQ7T7Xzc/PbbfBnj0wcyYYje6JzRNI8hHCiUJD9W3VFZMm6dpOr15uC8ljyKN2IZxs0CCYPl1PkzFsmLuj8RzS4CwcQhqchb3ktksIO5jN8MQTUFzs7kgaP7ntEsJGR47AL3+p++Pk5+ulh325wbihpOYjGsRXOhn+4x/Qp49OPKDXPp84sWGL5vk6afMRDuHNbT7Lluk1zysqah5buFAPABX2k5qPEHWorIQ//EE/Hq8t8QC88AKkpbk2Lm8hyUeIWpSVwdix8NprlstVVuoEVFdyEnWTBmchrnP2LIwYATt2WC/bty+8/37jn9LUHaTmI8Q1jh6Fn//ctsSTkAAZGXoqDGE/ST5C/CQvD2Jj4eBBy+UMBpg3D95+2/umNnUlue0SAr2KxC9/CaWllssZjbBuHTz8sEvC8mqSfITP++gjeOQR3chsSatWsGUL3HWXa+LydnLbJRqksXcyXLtWNy5bSzwdO0JWliQeR5JOhsIhGmMnwzfe0BN+WRMTA1u31pyXRzSM1HyEz1EKZsywLfEMHqzbgyTxOJ4kH+FTlILf/17Pr2PNuHHw4YfQrJmzo/JNknyEz1BKrxKxYIH1spMnw8qV4C+PZJxGko+XWrp0KR07diQoKIiYmBg+/fTTOstmZmZiMBhqbIeuDOH2ApWVeimbN96wXnbWLJg/33vWRPdUkte90MaNG0lKSmLp0qXcddddvPnmm8THx3Pw4EE6dOhQ53n5+fnVGovbtGnjinBd4v/+D1assFzGYIAlS/RAUuF88rTLC/Xp04devXqxbNmyqn233norw4cPJzk5uUb5zMxM7rvvPs6ePctN9VwY3NOfdl2+rJctfu+92o/7+8OaNTB6tGvj8mVSsfQy5eXl7Nu3j7i4uGr74+LiyMrKsnhudHQ04eHhDBgwgIyMDItly8rKKCkpqbZ5Mn9/3TO5tgncAwNh82ZJPK4mycfLnD59moqKCkKvezYcGhpKUVFRreeEh4ezYsUKUlNT2bx5M1FRUQwYMICdO3fW+TnJycmYTKaqrX379g79Hs4QEAAbN+rH51cEBeknWkOHui8uXyW3XV7m+++/p127dmRlZREbG1u1f/bs2bzzzjs2NyIPHToUg8HAli1baj1eVlZG2TXdgktKSmjfvr3H3nZd6+JFnWx27dJDKwYMcHdEvkkanL1McHAwfn5+NWo5xcXFNWpDlvTt25e1a9fWedxoNGJspLOnX6ntHDwIvXu7OxrfJbddXiYwMJCYmBjS09Or7U9PT6dfv342v09ubi7h4eGODs9jNG0qicfdpObjhSZPnkxCQgK9e/cmNjaWFStWcOzYMSZMmADA1KlTOX78OGvWrAFg0aJFREZG0q1bN8rLy1m7di2pqamkpqa682sILyfJxwuNHDmSM2fO8Oqrr3LixAm6d+/Otm3biIiIAODEiRMcO3asqnx5eTkvvPACx48f54YbbqBbt25s3bqVwde2zHqwykpITYVf/Ur31RGNgzQ4C4dwVz+fykp48kn461/1kIj58yUBNRbS5iMaLaV0wvnrX/XrhQshKUkW8mssJPmIRmvaNFi8uPq+v/xFL/AnCcjzSfIRDeKumQxffx1mzqwrJj0+q7LSpSEJO0mbj3AIV7b5vPmmHqFuSdOmsG8fdO3q1FBEA0jNRzQq69bBxImWywQF6Z7Lkng8myQf0Wh8+CEkJlpuz/H3h7/9De6/33VxifqR5CMahX/8Ax591PKa6E2a6JrRgw+6Li5Rf5J8hMfLytJTYZSXWy731ls6QYnGQZKP8GhffKGnwPjxR8vlFi2C3/zGJSEJB5HkIzzWkSMwaBCYzZbLzZypJ4YXjYskH+GRTp6EgQPh1CnL5X7/e3jpJdfEJBxLko9oEGd0Miwt1bdaBQWWy02YAPPmyViuxko6GQqHcFQnw/JyPcvg9u2Wy40dqyd8l+VtGi/50QmPUVkJTzxhPfEMGwarVkniaezkxyc8xtSpYGHmVgDuvhs2bNCTwYvGTZKP8AiLF8Nrr1ku062b7uUcFOSamIRzSfIRbrdpEzz3nOUyP/sZfPwxtGzpmpiE80nyEW51+TK8+qrl8Vo33QRpadAIlgYTdpDkI9zK3x8++aTulSSMRtiyRd9yCe8iyUe4XUgIZGTo3szXMhjg3Xd1I7PwPpJ8RIM4qpNhs2a6hvPYY1f3LVkCDz3UwACFx5JOhsIhHNXJUCk9XMJggNmzHRig8DiSfIRDOHoaVaVk2IS3k9su4ZEk8Xg/ST5CCLeQ5COc7pqVmYWoIslHONWWLdCpk15LS4hrSfIRTpOdDaNGwaVL8PTT+imWPN4QV0jyEU5x6BAMGQIXLlzdN2eOnmf50iX3xSU8hyQf0SC1dTL8/nvdW/mHH2qWX71az8dz/rzrYhSeSfr5CIe40s/n2DEzQ4a0YP9+y+VXr9YLAArfJTUf4VBjx2I18Tz7bPVhFMI3Sc1HOMS5cyW0bGkCzEDdPZwffRTWr5cpUIXUfIQDKAV//KP1cvfeK5O+i6vkn4FosAULYNkyy2V69oQPPtDz8wgBknxEA61bpxfus6RDBz0FqsnkmphE4yDJR9Rbejo8/rjlMq1awd//Dm3buiYm0Xj4N+RkpRSlpaWOikU0Ijk55YwYEcClS1eGn5dc96e+xdqwQSeekpIabyG8WPPmzTFYmZqgQU+7rvTtEEKIa9kyr1ODks/1NZ877riDnJycWsuWlJTQvn17CgsL6wzK0vnOPi7x2Xb8449zeOAB+PbbGhEC7YFCoAWLF8O4ca6Pz9Ovn6/EZ0vNp0G3XQaDoVogfn5+VrNdixYt6ixj7XxnH5f4LB83GJoxalSLWhJPtQiZNq0Fzzzj+vg8/fr5enzXc2iD81NPPeXU85193Bpfju/SJfD3T8XCL04ARo8uZ9o018dny3FrJD7nxnc9l/VwdvQcv44m8dVNKXjiCVi1ylKpEsBEQUEhkZE/c1FktpOfb8M4Iz6XPWo3Go1MmzYNo4f2MpP46vbKK9YSD/TuXQnAjTfK9asPX4xPxnYJi95+u2bD8fWioiAtrYSOHT33N7fwPNLJUFg0cCBER9d9PDxcdyJs1cp1MQnvIMlHWBQWBpmZ8Itf1DzWooUeNhER4fKwhBeQ5COsatECtm6FMWOu7gsM1ANFP/vMMcslC98jbT7CZpWV8Ic/6FHs69fDyJFXj3n60xrheZxa85k9ezb9+vWjadOm3HTTTTadM27cOAwGQ7Wtb9++HhGbUorp06fTtm1bbrjhBu69916++uorh8cGcPbsWRISEjCZTJhMJhISEjh37pzFc5x97Zo0gddfh337qiceT7F06VI6duxIUFAQMTExfPrpp3WWzczMrHGtDAYDhw4dcnhcO3fuZOjQobRt2xaDwcAHH3xg9ZwdO3YQExNDUFAQN998M8uXL3d4XPWNz1HXzqnJp7y8nEceeYSJEyfadd6gQYM4ceJE1bZt2zaPiO21115j4cKFLFmyhJycHMLCwnjggQecMrh2zJgx5OXlkZaWRlpaGnl5eSQkJFg9zxXXzlIDtLts3LiRpKQkXnrpJXJzc7n77ruJj4/nmJUVC/Pz86tdr86dOzs8tvPnz3P77bezZMkSm8oXFBQwePBg7r77bnJzc/njH//IM888Q2pqqsNjq098VzT42ikXWLVqlTKZTDaVTUxMVMOGDXNqPNeyNbbKykoVFham5s6dW7Xv4sWLymQyqeXLlzs0poMHDypA7d69u2pfdna2AtShQ4fqPM/V1+5aZrNZAcpsNrvl8++88041YcKEavu6du2qpkyZUmv5jIwMBaizZ8+6ILqrAPX+++9bLPPiiy+qrl27Vtv35JNPqr59+zoxMs2W+Bx17TyywTkzM5OQkBC6dOnC+PHjKS4udndIFBQUUFRURFxcXNU+o9FI//79ycrKcuhnZWdnYzKZ6NOnT9W+vn37YjKZrH6WJ147ZysvL2ffvn3VfjYAcXFxVq9XdHQ04eHhDBgwgIyMDGeGabPs7Owa32XgwIHs3buXSx606FlDr53HJZ/4+HjWrVvHJ598woIFC8jJyeH++++nrKzMrXEVFRUBEBoaWm1/aGho1TFHflZISEiN/SEhIRY/qz7X7uWXG/9SxqdPn6aiosKun014eDgrVqwgNTWVzZs3ExUVxYABA9i5c6crQraoqKio1u9y+fJlTp8+7aaornLUtbN7VPv06dOZMWOGxTI5OTn07t3b3rcGYOQ1LZndu3end+/eREREsHXrVh566CG3xgbUmCZAKWV16gB746vtc2z5LHuv3eLFMHu2/ntREbz6Ktj4VTySPT+bqKgooqKiql7HxsZSWFjI/Pnzueeee5wapy1q+y617XcHR107u5PP008/zahRoyyWiYyMtPdt6xQeHk5ERARHjhyxWtaZsYWFhQH6t1J4eHjV/uLi4hq/pRoa3/79+zl58mSNY6dOnbL5s8DytduwAZKSrr6eNQtOnoSlS8G/QROtuF5wcDB+fn41ajn2/GxA39quXbvW0eHZLSwsrNbv4u/vT+vWrd0UlWX1uXZ2/zMLDg4mODjY3tPq7cyZMxQWFlb7D18XZ8bWsWNHwsLCSE9PJ/qnxz3l5eXs2LGDefPm2fQetsYXGxuL2Wxmz5493HnnnQB8/vnnmM1m+vXrZ3PMdV279PTaF+176y04dQrefRduuMG2z0hJSSElJYWKigqb43K0wMBAYmJiSE9PZ8SIEVX709PTGTZsmM3vk5uba9O/M2eLjY3lo48+qrZv+/bt9O7dm4CAADdFZVm9rl2DmqutOHr0qMrNzVUzZsxQzZo1U7m5uSo3N1eVlpZWlYmKilKbN29WSilVWlqqnn/+eZWVlaUKCgpURkaGio2NVe3atVMlJSVujU0ppebOnatMJpPavHmzOnDggBo9erQKDw93eGxKKTVo0CDVs2dPlZ2drbKzs1WPHj3UkCFDqpWpz7XLyVGqWTOl9EQZtW+/+IVSlZX2xevup10bNmxQAQEBauXKlergwYMqKSlJ3Xjjjeq7775TSik1ZcoUlZCQUFX+z3/+s3r//ffV4cOH1ZdffqmmTJmiAJWamurw2EpLS6v+fQFq4cKFKjc3Vx09erTW2L799lvVtGlT9dxzz6mDBw+qlStXqoCAAPW3v/3N4bHVJz5HXTunJp/ExEQF1NgyMjKuBgBq1apVSimlfvzxRxUXF6fatGmjAgICVIcOHVRiYqI6duyY22NTSj9unzZtmgoLC1NGo1Hdc8896sCBAw6PTSmlzpw5o8aOHauaN2+umjdvrsaOHVvj0aa91+7wYaXatLGceAwGpTZtsj9edycfpZRKSUlRERERKjAwUPXq1Uvt2LGj6lhiYqLq379/1et58+apW265RQUFBamWLVuqn//852rr1q1OievKo+nrt8TExFpjU0qpzMxMFR0drQIDA1VkZKRatmyZU2KrT3yOunYyvMJHnDgBd90FBQWWy6WkwKRJ9r+/DK8Q9vK4R+3C8cxmiI+3nnj+9Kf6JR4h6kOSj5f78UcYOhT+9S/L5X77W5g+3SUhCQFI8vFq5eXw8MNgYXwlACNG6EfsHtCFRPgQST5eqqICfv1rSEuzXO6ee/SjdT8/18QlxBWSfLyQUvDkk/Dee5bL9egBH34IQUGuiUuIa0ny8TJKwQsvwMqVlstFRupakY1TGdUpJUVmMhT1I4/avczMmfqplSVhYbodqFMnx32uPGoX9pKajxf5y1+sJ56WLfXwCkcmHiHqQ5KPl1i9Gp591nKZZs30rVb37i4JSQiLJPl4gc2b9XLGlhiNsGUL/DROVQi3k+TTyP397zB6tF5Zoi5+fvrJ1333uS4uIayR5NOI7dkDw4frzoR1MRhgzRrdy1kITyLJpxHr3l13ErQkJaX6Yn9CeApJPo1Y06a6k+CDD9Z+PDkZ7Fy1SAiXkeTTyAUF6QbnaybwA2DKFL05m3QyFPUlnQy9xKVLeizXpk3w1FPwxhuuHSgqnQyFvRrZVOGiLgEBsG6dnrfnscdkhLrwfFLzEQ4hNR9hL2nzEUK4hSQfD/bvf1vuPFibs2fPkpCQgMlkwmQykZCQwLlz5yyeM27cOAwGQ7Wtb9++9Q9cCBtI8vFQu3dDr156TmV7EtCYMWPIy8sjLS2NtLQ08vLySEhIsHreoEGDOHHiRNW2bdu2BkQvhHXS4OyBsrJg0CAoLYU339TDI5Yssd6I/PXXX5OWlsbu3bvp06cPAG+99RaxsbHk5+dXW+L2ekajsWpVViFcQWo+Huazz2DgQJ14rli6VI9Yt/ZoIDs7G5PJVJV4QC9jazKZyMrKsnhuZmYmISEhdOnShfHjx1NcXGyxfFlZGSUlJdU2IewhyceDbN+uE89//1vz2BtvwOTJlhNQUVERISEhNfaHhITUWPv7WvHx8axbt45PPvmEBQsWkJOTw/33309ZWVmd5yQnJ1e1K5lMJtq3b2/xuwlxPUk+HiI1FYYM0Uvd1GXRImjS5Nc1GocNBgN79+4FwFDLvZlSqtb9V4wcOZIHH3yQ7t27M3ToUD7++GMOHz7M1q1b6zxn6tSpmM3mqq2wsNDm7yoESJuPR3j7bfjNb6w3LA8eXMK8eS/j7/9yjWORkZHs37+fkydP1jh26tQpQkNDbY4nPDyciIgIjhw5UmcZo9GI0Wi0+T2FuJ4kHzd74w145hnr5caOhdWrW+DvX3cHvtjYWMxmM3v27OHOn2YN+/zzzzGbzfTr18/mmM6cOUNhYSHh4eE2nyOE3Rq2xLyor8pKpWbOVEq34ljeHntMqcuXbXvfQYMGqZ49e6rs7GyVnZ2tevTooYYMGVKtTFRUlNq8ebNSSqnS0lL1/PPPq6ysLFVQUKAyMjJUbGysateunSopKbH5+5jNZgUos9ls8znCt0mbjxtUVurlbV55xXrZiRNh1SrbF/Vbt24dPXr0IC4ujri4OHr27Mk777xTrUx+fj5msxkAPz8/Dhw4wLBhw+jSpQuJiYl06dKF7Oxsmjdvbu9XE8JmMrbLxcrKYNw42LDBetkpU2DOnMYxSFTGdgl7SZuPC507p+fdycy0XjY52TXz8QjhLpJ8XKSwEAYPhi+/tFzOYNBTn8oMhMLbSZuPCxw4ALGx1hOPn5+e7L0xJR6ZyVDUl7T5OFlGhr7V+ql9t05BQbodaNgw18TlaNLmI+wlNR8nWrdODxC1lnhatYJ//rPxJh4h6kOSjxNUVsJLL+k5lS2tqQUQGQm7doEdfQCF8ArS4OxgSul1sjZutF42Ohq2bQOZyUL4Iqn5OJjBAAMGWC83cCDs2CGJR/guST5OMH48JCXVfTwxET76CKQDsfBlknyc5PXXdWPz9V5+WQ+XCAhwfUxCeBJJPk7i768fnd96q35tNMI778DMmY1juIQQzibJx4lMJn17ddttur/Pr3/t7ogcTzoZivqSToYuUFkJTbw8zUsnQ2EvL/8v4VgXL+rOgPby9sQjRH3IfwsbHTwIffroRuSfpksWQjSAJB8rlIK33oLevWH/frh8GUaPrr60jRDCfpJ8LCguhkcegd/+Fi5cuLr/m2/g6afdF5cQ3kCSTx02bYJu3fSSNrVZswbWrnVtTEJ4E0k+17lS2xk5Ek6ftlx24kT4979dE5cQ3kYGlv5EKV3beeopOHPGtnM6dbK+1pYQonZS8wG++w6GD4dRo2xPPElJsHs3dO7sxMAaAelkKOrLpzsZlpXBggUwa1b1BmVLgoNh9Wp48EGnhtboSCdDYS+fvO1SCtLS4LnnID/f9vOGD4dly2QaDCEcweduu3Jz4YEH9EoStiae1q1h/XrYvFkSjxCO4jPJp7BQz6MTE2PfEImHHoKvvtLtQTIaXQjH8frbrpMn9dw6KSl6bJatWrfW5zz6qCQdIZzBq5PPzJl65U9bG5OveOIJmDtXNy4LIZzDq5NPkyb2JZ6ePXWDsqwkIYTzeXWbz+9+By1bWi/XsiUsWgT79kniEcJVvDr5tGihH6fXJTAQnn9eD5F49lk99amwj3QyFPXV6DoZXrigt1atbCt/7pxemO/6VUNHjYI5c6BjR0dH6Jukk6GwV6Oo+ZSW6j42Y8dCSIhuRLbVTTdVX8YmLg4+/1z325HEI4T7eGTN5/JlyMuDzEz4+GP49FO4dOnq8Q4d9HgsWx+BnzsH//u/+hYrNtbx8Qqp+Qj7uT35KAXHj8O//gU5OfDZZ3rA5vnzls/bvVtPayo8gyQfYS+nNbFWVkJ5ue7Y98MPerT4Dz/Af/4DBQXw7bd6O3JE77fXpk2SfGoze/Zstm7dSl5eHoGBgZw7d87qOUopZsyYwYoVKzh79ix9+vQhJSWFbt26OT9g4bOckny6drVvwGZ9vPee7rksK0NUV15eziOPPEJsbCwrV6606ZzXXnuNhQsXsnr1arp06cKsWbN44IEHyM/Pp7ms6SycRTnBbbcppW+onLvt2uWM6L3DqlWrlMlkslqusrJShYWFqblz51btu3jxojKZTGr58uU2f57ZbFaAMpvN9QlX+CCn1BsCA53xrlcFBcHDD+s/RcMUFBRQVFREXFxc1T6j0Uj//v3JyspyY2TC2znltssZySckBOLj9VQYgwdDs2aO/wxfVFRUBEBoaGi1/aGhoRw9erTO88rKyigrK6t6XVJS4pwAhddySs3HaGz4e7RsCUOHwrx5sGcPnDihZxB89FHfSzzTp0/HYDBY3PY2cCVDw3X9FpRSNfZdKzk5GZPJVLW1b9++QZ8vfI9H1HyaNYMePeD22yE6Gu66C269VRqTr3j66acZNWqUxTKRkZH1eu+wn2ZHKyoqIjw8vGp/cXFxjdrQtaZOncrkyZOrXpeUlEgCEnZxSvJp1kyPqwoM1JvJpOfHad1aT1MREQE336x7GN98M4SGypw5lgQHBxPspPk9OnbsSFhYGOnp6URHRwP6idmOHTuYN29enecZjUaMjqjiCp/llOTzwQfOeFdhi2PHjvHDDz9w7NgxKioqyMvLA6BTp040++l+tWvXriQnJzNixAgMBgNJSUnMmTOHzp0707lzZ+bMmUPTpk0ZM2aMG7+J8HYyjtvL/OlPf+Ltt9+uen2lNpORkcG9994LQH5+PuZrRtq++OKLXLhwgUmTJlV1Mty+fbtdfXyaN2+O2WyWfkHCZm4fXiGE8E3SpCuEcAtJPkIIt5DkI4RwC0k+Qgi3kOQjhHALST5CCLeQ5COEcAtJPkIIt5DkI4RwC0k+Qgi3kOQjhHALST5CCLf4fwHn/UIXgm+2AAAAAElFTkSuQmCC\n", "text/plain": [ "Graphics object consisting of 1 graphics primitive" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "p = plot(sin(x), (x,-pi/2,pi/2), linestyle='--', thickness=5)\n", "p.show(figsize=3)" ] }, { "cell_type": "markdown", "id": "a3ba840b", "metadata": {}, "source": [ "Se pueden hacer muchísimas cosas gráficas con Sage, pero no las necesitaremos. Puedes ver ejemplos en https://matplotlib.org/stable/gallery/index.html.\n", "\n", "Algo que sí te puede venir bien es dibujar puntos sueltos." ] }, { "cell_type": "code", "execution_count": 43, "id": "f9210803", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAASEAAADXCAYAAABVoeerAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAASrElEQVR4nO3dX0xcVR4H8O9YYKgK04IyDAEX0Aa2NG0QMGCgVYnDloSVbB/2wbTovpSGP2kJWwt98Gkzmhit2go2UkzTaE0cqDRoF5IyQ7tCUprBVkuxRkoJYUQSd4aiGZjm7EO3szvt8OcOM5w71+8nuUnvnXPm/g6n+ebMvfNHJ4QQICKS5CHZBRDR7xtDiIikYggRkVQMISKSiiFERFIxhIhIKoYQEUnFECIiqRhCRCQVQ4iIpFIUQi0tLdi6dSvi4+MRHx+PoqIifPXVV0v2sdvtyMvLQ2xsLDIzM9Ha2qq4SCEE3G43+AkTIu1RFEKpqal44403MDQ0hKGhIbzwwgt46aWX8N133wVsPzY2hvLycpSUlMDhcKC5uRn19fWwWq2KipydnYXBYMDs7KyifkQUWnfuhOFJxSpt3LhRfPTRRwEfO3jwoMjOzvY7tnfvXlFYWKjoHC6XSwAQLpcr6DqJaHXq6oRYt06IpCQh+vpC97xBXxO6c+cOTp8+jbm5ORQVFQVsMzAwALPZ7HesrKwMQ0NDWFhYWPS5PR4P3G6330ZE8vzzn8D7799dCU1PA1VVoXtuxSF09epVPProo9Dr9aiurkZnZyc2b94csK3T6YTRaPQ7ZjQa4fV6MTMzs+g5LBYLDAaDb0tLS1NaJhGF0C+/LL2/GopDKCsrC8PDwxgcHMS+fftQVVWFa9euLdpep9P57Yv/Xly+//j/a2pqgsvl8m0TExNKyySiECovB3Jy/rf/97+H7rmjlHaIiYnBU089BQDIz8/HpUuX8O677+LDDz98oG1ycjKcTqffsenpaURFRSExMXHRc+j1euj1eqWlEVGYxMcDg4NAXx/w+ONAYWHonltxCN1PCAGPxxPwsaKiIpw9e9bvWE9PD/Lz8xEdHb3aUxPRGnr0UaCiIvTPq+jlWHNzMy5cuICbN2/i6tWrOHz4MGw2G15++WUAd19G7dmzx9e+uroa4+PjaGhowMjICE6cOIG2tjY0NjaGdhREFLEUrYR++ukn7N69G1NTUzAYDNi6dSvOnTuHF198EQAwNTWFW7du+dpnZGTgyy+/xIEDB3Ds2DGkpKTgvffew65du0I7CiKKWDoh1P82ZLfbDYPBAJfLhfj4eNnlEFEI8bNjRCSVqkPo2LFj2Lx5MwoKCmSXQkRhwpdjRCSVqldCRKR9DCEikoohRERSMYSISCqGEBFJpeoQ4i16Iu3jLXoikkrVKyEi0j6GEBFJxRAiIqkYQkQkFUOIiKRiCBGRVKoOIb5PiEj7+D4hIpJK1SshItI+hhARScUQIiKpGEJEJBVDiIikUnUI8RY9kfbxFj0RSaXqlRARaZ+iELJYLCgoKEBcXBySkpJQWVmJ0dHRJfvYbDbodLoHtuvXr6+qcCLSBkUhZLfbUVNTg8HBQfT29sLr9cJsNmNubm7ZvqOjo5iamvJtmzZtCrpoItKOKCWNz50757ff3t6OpKQkXL58Gdu3b1+yb1JSEjZs2KC4QCLStlVdE3K5XACAhISEZdvm5ubCZDKhtLQUfX19S7b1eDxwu91+GxFpU9AhJIRAQ0MDiouLsWXLlkXbmUwmHD9+HFarFR0dHcjKykJpaSn6+/sX7WOxWGAwGHxbWlpasGUSkcoFfYu+pqYG3d3duHjxIlJTUxX1raiogE6nQ1dXV8DHPR4PPB6Pb9/tdiMtLY236Ik0KKiVUF1dHbq6utDX16c4gACgsLAQN27cWPRxvV6P+Ph4v42ItEnRhWkhBOrq6tDZ2QmbzYaMjIygTupwOGAymYLqS0TaoiiEampq8Mknn+CLL75AXFwcnE4nAMBgMGD9+vUAgKamJkxOTuLkyZMAgCNHjiA9PR05OTmYn5/HqVOnYLVaYbVaQzwUIopEikKopaUFAPDcc8/5HW9vb8crr7wCAJiamsKtW7d8j83Pz6OxsRGTk5NYv349cnJy0N3djfLy8tVVTkSawM+OEZFU/OwYEUml6hDiV3kQaR9fjhGRVKpeCRGR9jGEiEgqhhARScUQIiKpGEJEJJWqQ4i36Im0j7foiUgqVa+EiEj7GEJEJBVDiIikYggRkVQMISKSiiFERFKpOoT4PiEi7eP7hIhIKlWvhIhI+xhCRCQVQ4iIpGIIEZFUDCEikkrVIcRb9ETax1v0RCSVqldCRKR9DCEikkpRCFksFhQUFCAuLg5JSUmorKzE6Ojosv3sdjvy8vIQGxuLzMxMtLa2Bl0wEWmLohCy2+2oqanB4OAgent74fV6YTabMTc3t2ifsbExlJeXo6SkBA6HA83Nzaivr4fVal118UQU+VZ1Yfrnn39GUlIS7HY7tm/fHrDNa6+9hq6uLoyMjPiOVVdX45tvvsHAwMCKzsML00TataprQi6XCwCQkJCwaJuBgQGYzWa/Y2VlZRgaGsLCwkLAPh6PB263228jIm0KOoSEEGhoaEBxcTG2bNmyaDun0wmj0eh3zGg0wuv1YmZmJmAfi8UCg8Hg29LS0oItk4hULugQqq2txZUrV/Dpp58u21an0/nt33sFeP/xe5qamuByuXzbxMREsGUSkcpFBdOprq4OXV1d6O/vR2pq6pJtk5OT4XQ6/Y5NT08jKioKiYmJAfvo9Xro9fpgSiOiCKNoJSSEQG1tLTo6OnD+/HlkZGQs26eoqAi9vb1+x3p6epCfn4/o6Ghl1RKR5igKoZqaGpw6dQqffPIJ4uLi4HQ64XQ68dtvv/naNDU1Yc+ePb796upqjI+Po6GhASMjIzhx4gTa2trQ2NgYulEQUeQSCgAIuLW3t/vaVFVViR07dvj1s9lsIjc3V8TExIj09HTR0tKi5LTC5XIJAMLlcinqR0Tqxw+wEpFUqv7sGL/Kg0j7uBIiIqlUvRIiIu1jCBGRVAwhIpKKIUREUjGEiEgqhhARSaXqEOL7hIi0j+8TIiKpVL0SIiLtYwgRkVQMISKSiiFERFIxhIhIKlWHEG/RE2kfb9ETkVSqXgkRkfYxhIhIKoYQEUnFECIiqRhCRCQVQ4iIpFJ1CPF9QkTax/cJEZFUql4JEZH2KQ6h/v5+VFRUICUlBTqdDmfOnFmyvc1mg06ne2C7fv16sDUTkYZEKe0wNzeHbdu24dVXX8WuXbtW3G90dNTvpdTjjz+u9NREpEGKQ2jnzp3YuXOn4hMlJSVhw4YNivsRkbat2TWh3NxcmEwmlJaWoq+vb8m2Ho8HbrfbbyMibQp7CJlMJhw/fhxWqxUdHR3IyspCaWkp+vv7F+1jsVhgMBh8W1paWrjLJCJJVnWLXqfTobOzE5WVlYr6VVRUQKfToaurK+DjHo8HHo/Ht+92u5GWlsZb9EQaJOUWfWFhIW7cuLHo43q9HvHx8X4bEWmTlBByOBwwmUwyTk1EKqP47tjt27fxww8/+PbHxsYwPDyMhIQEPPHEE2hqasLk5CROnjwJADhy5AjS09ORk5OD+fl5nDp1ClarFVarNXSjIKKIpTiEhoaG8Pzzz/v2GxoaAABVVVX4+OOPMTU1hVu3bvken5+fR2NjIyYnJ7F+/Xrk5OSgu7sb5eXlISifiCIdPztGRFLxs2NEJJWqQ4hf5UGkfXw5RkRSqXolRETaxxAiIqkYQkQkFUOIiKRiCBGRVKoOId6iJ9I+3qInIqlUvRIiIu1jCBGRVAwhIpKKIUREUjGEiEgqVYcQb9ETaR9v0RORVKpeCRGR9jGEiEgqhhARScUQIiKpGEJEJBVDiIikUnUI8X1CRNrH9wkRkVSqXgkRkfYpDqH+/n5UVFQgJSUFOp0OZ86cWbaP3W5HXl4eYmNjkZmZidbW1mBqJSINUhxCc3Nz2LZtG44ePbqi9mNjYygvL0dJSQkcDgeam5tRX18Pq9WquFgi0iCxCgBEZ2fnkm0OHjwosrOz/Y7t3btXFBYWrugcXV1ClJS4BABx5Yor2FJJon//W4i//U2I7duFeP992dWQ2kSFO+QGBgZgNpv9jpWVlaGtrQ0LCwuIjo5+oI/H44HH48H33wN/+Qvg9boBAH/9K3DtWrgrplDbuxf47LO7/+7vB554Avjzn+XWROoR9gvTTqcTRqPR75jRaITX68XMzEzAPhaLBQaDAQUFBni9BgBpAICREeDOnXBXTKF25Yr//tWrcuogdVqTu2M6nc5vX/z3XQH3H7+nqakJLpcL16+7sHGjC8AEAOCFF4B168JaKoXBn/70v39HRQGlpfJqIfUJ+8ux5ORkOJ1Ov2PT09OIiopCYmJiwD56vR56vR7x8cC//gV88AFw9Chw6lS4q6VweOst4MkngR9+ACorgcJC2RWRmoQ9hIqKinD27Fm/Yz09PcjPzw94Peh+f/wj8I9/3A2hRx4JV5UUTg89BNTUyK6C1Erxy7Hbt29jeHgYw8PDAO7egh8eHsatW7cA3H0ptWfPHl/76upqjI+Po6GhASMjIzhx4gTa2trQ2Ni44nPGxcXB5XIhLi5OablEpHZKb6f19fUJAA9sVVVVQgghqqqqxI4dO/z62Gw2kZubK2JiYkR6erpoaWkJwY09ItKCiPjsGBFpFz87RkRSMYSISCqGEBFJxRAiIqkYQkQkFUOIiKRiCBGRVAwhIpKKIUREUoX9A6xKCSEwOzsruwwiUiAuLm7Rr+ZZjupCaHZ2FgaDQXYZRKTAan6OS3WfHQu0EnK73UhLS8PExMSKBlpQUIBLly6t+JxK2oerbTjHqIa/h9LxhasOpW2VtP89/z/V1EpIp9MtOoHx8fErmtx169YpSmUl7cPV9p5wjFEtfw9g5eMLZx3h/HsA/H+qlCYvTNco/AYtJe3D1VapcNah9TGG8+8RzudVy98j1FT3ciyQ38PPQGt9jFofH8AxBisiVkJ6vR6vv/469Hq97FLCRutj1Pr4AI4xWBGxEiIi7YqIlRARaRdDiIikYggRkVQMISKSSjUh9MEHHyAjIwOxsbHIy8vDhQsXlmxvt9uRl5eH2NhYZGZmorW1dY0qDY6S8dlsNuh0uge269evr2HFyvT396OiogIpKSnQ6XQ4c+bMsn0ibQ6VjjHS5tFisaCgoABxcXFISkpCZWUlRkdHl+232nlURQh99tln2L9/Pw4fPgyHw4GSkhLs3LnT94OK9xsbG0N5eTlKSkrgcDjQ3NyM+vp6WK3WNa58ZZSO757R0VFMTU35tk2bNq1RxcrNzc1h27ZtOHr06IraR9ocAsrHeE+kzKPdbkdNTQ0GBwfR29sLr9cLs9mMubm5RfuEZB5l/eDZ/3vmmWdEdXW137Hs7Gxx6NChgO0PHjwosrOz/Y7t3btXFBYWhq3G1VA6vns/MPnLL7+sQXWhB0B0dnYu2SbS5vB+KxljpM/j9PS0ACDsdvuibUIxj9JXQvPz87h8+TLMZrPfcbPZjK+//jpgn4GBgQfal5WVYWhoCAsLC2GrNRjBjO+e3NxcmEwmlJaWoq+vL5xlrrlImsPVitR5dLlcAICEhIRF24RiHqWH0MzMDO7cuQOj0eh33Gg0wul0BuzjdDoDtvd6vZiZmQlbrcEIZnwmkwnHjx+H1WpFR0cHsrKyUFpaiv7+/rUoeU1E0hwGK5LnUQiBhoYGFBcXY8uWLYu2C8U8quZT9Pd/DYAQYsmvBgjUPtBxtVAyvqysLGRlZfn2i4qKMDExgbfeegvbt28Pa51rKdLmUKlInsfa2lpcuXIFFy9eXLbtaudR+krosccew7p16x5YFUxPTz+QsPckJycHbB8VFYXExMSw1RqMYMYXSGFhIW7cuBHq8qSJpDkMpUiYx7q6OnR1daGvrw+pqalLtg3FPEoPoZiYGOTl5aG3t9fveG9vL5599tmAfYqKih5o39PTg/z8fERHR4et1mAEM75AHA4HTCZTqMuTJpLmMJTUPI9CCNTW1qKjowPnz59HRkbGsn1CMo/Kr5mH3unTp0V0dLRoa2sT165dE/v37xePPPKIuHnzphBCiEOHDondu3f72v/444/i4YcfFgcOHBDXrl0TbW1tIjo6Wnz++eeyhrAkpeN75513RGdnp/j+++/Ft99+Kw4dOiQACKvVKmsIy5qdnRUOh0M4HA4BQLz99tvC4XCI8fFxIUTkz6EQyscYafO4b98+YTAYhM1mE1NTU77t119/9bUJxzyqIoSEEOLYsWPiD3/4g4iJiRFPP/20323BqqoqsWPHDr/2NptN5ObmipiYGJGeni5aWlrWuGJllIzvzTffFE8++aSIjY0VGzduFMXFxaK7u1tC1St373b0/VtVVZUQQhtzqHSMkTaPgcYGQLS3t/vahGMe+VUeRCSV9GtCRPT7xhAiIqkYQkQkFUOIiKRiCBGRVAwhIpKKIUREUjGEiEgqhhARScUQIiKpGEJEJBVDiIik+g+fqnHYeGbFXAAAAABJRU5ErkJggg==\n", "text/plain": [ "Graphics object consisting of 1 graphics primitive" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "point([(0,1), (1,1), (2,3)], figsize=3)" ] }, { "cell_type": "markdown", "id": "a94eb720", "metadata": {}, "source": [ "Es posible representar varias funciones (u otros objetos) en la misma gráfica: simplemente se \"suman\" los objetos. Aquí aprovechamos para ponerle una leyenda a uno de los objetos (no es mala idea si la gráfica está muy llena)." ] }, { "cell_type": "code", "execution_count": 11, "id": "9e7dced1", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAR8AAADWCAYAAADox4aFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5c0lEQVR4nO2dd1hUx/rHv9SlCKuxgahgjL3FDlYsQbChsQWUYG5sMV7rL4YYEzGJNSom1qhcMZeIqIiiFEEpoqCCghpRNEqzoIK49Lrv749z2bihLbi7Z3eZz/OcR/fsOTPfHeC7M3Nm3leLiAgMBoOhZLT5FsBgMBonzHwYDAYvMPNhMBi8wMyHwWDwAjMfBoPBC8x8GAwGLzDzYTAYvMDMh8Fg8AIzHwaDwQvMfBhygYiQm5sLtmCeISvMfDSMS5cuYdKkSWjTpg20tLRw+vTpOu+JiopC//79YWBggPfffx/79++v8x4iwryAedBarwWt9VrQXqMNoVAI7TXaMNtmhluZt+TwaRiaDDMfDaOgoAB9+vTB7t27Zbo+JSUF48ePx/Dhw5GQkIA1a9Zg6dKl8PPzq/W+Xdd3wTPBs9r3XhS8wCSfSSirKKu3fkbjQZdvAQz54uDgAAcHB5mv379/P9q3b4+dO3cCALp164b4+Hhs27YN06ZNq/YeIsKv136ttdyM3Az43/fHzB4zZdbCaFww82nkxMbGws7OTurcuHHj4OnpibKyMujp6QFFRcCTJ5Ij+8kDOIc8grAIMCkFdMVASTmwGMCvQUC5EZCnD2ilbAdscgAzM6BdO+5o0QLQ0uLnwzJkhoiQlZWF9PR0pKen4/Xr1xCJRJIjNzcXZWVlEAgEOHToUIPqYObTyMnMzETr1q25F6WlwO3b6B0Tg53l5RCPGgU8egRkZkrd856hAb6oAESlQB6AMgD5/3uvxyvArIwzpebxicB/FwNi8d83GxgAH3wAdO8O9OgB9OkDDB7MGRRD6RARMjMzcevWLdy6dQuJiYm4c+cOUlJSUFhYKHVtkyZNIBQKYWpqClNTU+jr68PY2LjBdTPzaczk5WFMfj7GBgUB584BN28CJSXooKuLEQDE770HjBkDdOwItG3L9VzatoVYoIf+29rjec7zv8sqAeABjHEFYMCd8py8D//qMxd4+RLIyPj7ePAASEoCIiKAV6+4i9u140xo6FBg7FjOmFgPSe6IxWIkJSUhKioKUVFRiI6ORub/vlxMTEzQu3dvjBgxAp9//jksLS1haWmJdu3aoXnz5tDR0ZGrFmY+jQkiICEBCAkBzp8HYmKwr7wcWQUFwIQJwKxZwODBOJuWhulz5qDQzw/Q06tSjC6AxdaL8V3EdzVW1dywOZx6OgHa2lyvxswMGDiwqp4nT4Dr14Fr17jDzQ0oKQFatwY++giYPBmwtwdMTOTcGI2H/Px8hIWF4ezZswgMDMTLly+hp6eHgQMHYu7cuRg0aBD69OkDKysraGsr7xkUMx9Nhwi4cwfw8QGOHQNSUoAmTbgeza+/YktiIo5ERyPp6FHJLSFHjmDAgAHcfE8NfD30a8Q+iUXQw6Aq7zXRb4KTM0/CUM+wdm1aWn/PBVVObhcVAVeuABcuAMHBgLc3oK/P9YZmzOCuY0ZUJ3l5eTh16hR8fX0RHh6OkpISdOvWDXPnzoWdnR1sbGxgZGTEr0hiaBR5eXmUkJBAfwYF0VqAslq3JgKoXCgkmjePDn7yCc11dpZc//jxYzIyMqIVK1ZQUlISeXp6kp6eHp08ebLOusoqyuhwwmGyPmRNJutMCAAtPLmQHmY/lN8HevyYyMODaMQIIoDIyIhozhyisDCi8nL51aMBlJWVUWBgIDk5OZGhoSFpaWnRyJEjycPDg/766y++5VWBmY8mUV5OtzZupACAygHKBeh3gMYD9K85c4iIyNXVlUaOHCl1W2RkJPXt25f09fXJysqK9u3bV++qRSIRASCRSCSPT1I9qalEP/1E1LkzZ0QWFkTff0/07Jni6lQDnj9/Tj/88ANZWFgQAOrevTtt2rSJ0tPT+ZZWK8x8NAGRiOjnn4ksLbk/yr59iQ4cIMrLU6IEJZhPJWIx0dWrRAsXEhkbE+nqEjk5EcXEKL5uFUEsFtOVK1fIycmJ9PT0yNDQkObNm0fx8fEkFov5licTzHzUmefPib75hkgoJNLTI3J1Jbp+nfvjVDJKNZ+3ycnhhmUdO3LGO2wYUXAwL22gDMRiMQUFBdHQoUMJAHXs2JF27NhBr1+/5ltavWHmo46kpnLf+gIBUZMmRKtWEWVk8CqJN/OppKKC6MwZosGDORPq35/Iz487rwGUl5fTiRMnqG/fvgSABg8eTGfOnKEKNf58zHzUiRcviJYtI9LXJ2rZkmjDBiKev/F2795N3bp1o86dO/NrPpWIxUQXLhCNGsWZUI8eRAEBatsTEovFFBAQQD179iQANGbMGAoPD1eboVVtMPNRB968IfruO66XY2pK9OOPSp3PkQXeez7VceXK3yY0bBj3Wo2Ijo6WDK9GjRpFsbGxfEuSK8x8VJnSUqJffyVq3pzIwIDoq6+IsrL4VlUtKmk+RFyPJySEqE8fzoSmTCG6f59vVbWSnJxMkyZNIgDUt29fOn/+vEb0dP4JMx9VJTSUqHt3Ii0tonnziJ484VtRrais+VRSUUH03/9yTwT19Ii+/lrleo95eXnk5uZGenp6ZGVlRT4+Pmo9p1MXzHxUjYwMoqlTuW/p4cOJbt7kW5FMqLz5VFJYSLR+PdeTtLAgOnaM9/kgsVhMx44dIwsLCzIwMCB3d3cqLCzkVZMyYOajKpSXc0MsExMiMzMiHx/e/yjqg9qYTyWPH3NDMIBo9Gii5GReZNy/f59GjRpFAGjKlCn0+PFjXnTwAYtkqAokJgI2NsDSpcDs2cC9e8Ann7Bd3YqkQwfA35/bP5aWxoX22LYNqKhQSvXl5eXYvHkz+vTpg4yMDAQHB8Pf3x8dOnRQSv0qAd/u16gpKeEWCeroEPXsqXZPY95G7Xo+b1NQQLRiBTe/NmgQ0d27Cq0uISGB+vXrR9ra2vTVV181iiFWdbCeD1/cvg0MGgT8/DPg7s7F0hkyhG9VjRMjI2DHDm43fW4u0LcvsHEjUCbfGNRlZWX4/vvvMXDgQJSVleHatWvYunUrDA3r2P2vqfDtfo2O8nKiTZu4Jy49e6rNhHJNqNwiw3elqIjIzY1IW5uoXz+ie/fkUuz9+/dpwIABpKurS+7u7lRSUiKXctUZZj7K5OFDoiFDuO796tVExcV8K5Ibaj3sqo64OKKuXbkQHgcPNnjyXywW0+7du8nQ0JC6dOlCcXFxchaqvjDzURZHj3IrlDt2JLp8mW81ckfjzIeIKD+faP587onY9On13sry8uVLcnBwIAC0ePFiKigoUJBQ9USLiKWYVCiFhcCyZcChQ4CzM7B/v0ZG4svNzYVQKIRIJIKpqSnfcuTLyZPA/Pncz+3oUWDYMABASXkJgh4G4Xn+c5g3MceEzhOgr6MPAIiOjsYnn3yCsrIyeHl5Yfz48Xx+ApWEmY8iSUoCZs4EHj8Gdu8GPvtMYx+fa7T5AEB6OjBnDjcp/f33OORghjVR3+FV4SvJJa2MW+En25+QFZaF7777DkOHDoWPjw/atGnDo3DVhZmPovDyAhYv5taTHD/OZWPQYDTefACgvBzYsAG0fj3Ov0+YPQ14/XYY5AIA/gD+AtasWYP169dDV5eFSa8JZj7yprQUWL4c2LcP+Ne/gF27uEe5Gk6jMB8ApRWlmPNFa+z1foN8fWDaLOBmGwAZAE4AKAOazW6GF/tfQE+n5gD8DJarXb5kZgKjR3PzO7/9Bnh6NgrjaUyc/+s8Tli8Qb+FwEtj4Ion8PkpAIcBCAEsAnLa5iD0USjPSlUfZj7y4to1oH9/bn4nKgpYsIBvRQwFkJnPJdjLaAoM/xTweg84dBvY/x6gOwecAb11HaNmmPnIA09PYMQIwNISiI/n9mk1Evbs2YPu3btj4D8TAmooFqYW3H/ygdKjwBfZwL/6AJ+9BkJ9gPf+l2G4jQmbZK4LNufzLpSVcfM7e/cCCxcCv/7KJbhrhDSWOZ9ycTnM/88cWYeyAAIwE0B7YFgacMoXyBUA8+a1woXNz6CjLd/0wpoG6/k0FJGISzF84AA3v7N/f6M1nsZE4NlA5O7LBUwALADQnjt/2RIYNB8o1APO78uDznk251MXzHwaQmoqMHQoEBfH5Txn8zsaDxFhx44dmDp1KiZNmATPU55o17ad1DUVlu1w7/RB6NuOASZOBHbu5NJVM6qHp5XV6svVq0StWhG9/77cNh1qAhq5veJ/lJWV0aJFiwgAubm5SUKblleU0/m/zpNXgheF/hVK5RX/S99cXs7F2wa47RmlpTyqV12Y+dSHEye48JtDhhC9fMm3GpVCU81HJBLRuHHjSFdXlw4dOlS/mw8f5rKpOjioXLxoVYANu2Rlxw5gxgxg6lTg4kWgZUu+FTEUzLNnzzB8+HBcvXoVISEh+Pzzz+tXwNy5QFAQEB0NjBoFvHypEJ3qCjOfuhCLgf/7P2DVKsDNDfjjD8DAgG9VDAWTnJyMIUOG4PXr17hy5QrGjBnTsII++gi4dAnIyOCCxf31l3yFqjHMfGqjrAxwdeV6Pb/8AmzapLEbQxl/c+3aNQwdOhTGxsaIjY1Fj3fdl9e3LxAbC+jocAYUFycfoWoOM5+ayM8HJk0CfH0BHx8uuDujCpq2yDA4OBijR49G165dER0djbZt28qn4A4duB3xHTsCtrZc4PrGDt+TTirJy5dEAwdyaWwuXOBbjVqgCRPOXl5epKOjQ5MnT1ZcUPeCAqJJk7ikAUeOKKYONYH1fP5JRgYXLCo9nduj1dCxPkOt2LlzJ+bOnYvPPvsMfn5+igvqbmQEnDrFTUa7unJxnhopLNjI2zx69LfZXL4MfPABv3oYCoeIsHHjRqxduxarV6/G5s2boaXoeT1dXeDgQUAoBP79byAvD/jmG8XWqYIw86nk7l3uyYSJCXDhAtCuXd33MNQaIsI333yDLVu24Mcff8S3336reOOpREuLS1IoFAJr1nDbdRrbAw2+x30qQXw8UfPmRL17E2Vm8q1GLuzZs4esrKxIIBBQv3796NKlSzVeGxERQeC2SUod9+qxglvd5nwqKiroyy+/JADk4eHBrxgPD2419BdfEP1v9XRjgJlPdDSRqSnR4MFE2dl8q5ELx44dIz09PTp48CAlJSXRsmXLyNjYmNLS0qq9vtJ8kpOT6fnz55KjvLxc5jrVyXzKyspo7ty5pKWlRQcPHuRbDsehQ1xKpTlziMrK+FajFBq3+YSFcXmZbG2JcnP5ViM3Bg0aRIsWLZI617VrV3Jzc6v2+krzycnJaXCd6mI+JSUlNGPGDNLR0aGjR4/yLUcaX19uO8a0aY1iP1jjfdoVGsrtPB45klsCryHpbEpLS3Hjxg3Y2dlJnbezs0NMTEyt9/bt2xfm5uYYM2YMIiIiar22pKQEubm5UoeqU1xcjI8//hhnzpyBn58fnJyc+JYkzcyZ3JOwgABg1iwuHrgG0zjNJzQUmDwZGDsW8PcHNChXdlZWFioqKtC6dWup861bt0ZmZvWhPc3NzXHgwAH4+fnh1KlT6NKlC8aMGYNLly7VWM+mTZsgFAolRzsVn6CvNJ6LFy/i7NmzcHR05FtS9UyaxBlQYCBnRppsQHx3vZROSAiRQEA0YYJGpSuu5OnTpwSAYmJipM7/9NNP1KVLF5nLmThxIk2aNKnG94uLi0kkEkmOjIwMlR12FRUVkYODAxkYGFBYWBjfcmQjMJBIX59bkKiBv6dEjW3YFRICODpyj9T9/ACBgG9FcqdFixbQ0dGp0st5+fJlld5QbVhbW+Phw4c1vi8QCGBqaip1qCKVPZ6IiAicPXsWY8eO5VuSbIwfD5w5w/XSp08HSkr4ViR3Go/5hIQAU6YAdnZc+lsNNB4A0NfXR//+/REWFiZ1PiwsDEOGDJG5nISEBJibm8tbnlJRW+OpxN6em/+5cAH4+GOguJhvRfKF766XUggO5oZaGtyFfZvKR+2enp6UlJREy5cvJ2NjY0pNTSUiIjc3N3JxcZFc7+HhQf7+/vTgwQP6888/yc3NjQCQn5+fzHWq2tMutRxq1URoKBfEzt6eqKiIbzVyQ/PNJyjo77FzSQnfapTGnj17yNLSkvT19alfv34UFRUlec/V1ZVGjhwpeb1lyxbq2LEjGRgYULNmzWjYsGEUGBhYr/pUyXw0yngquXCByNCQaNw4jfkC1ezUOZVzPPb2wIkTLLuEAlGV1DklJSWYOnWq+g61auPiRS5jSuXvs556p2PW3DmfyEgu5Om4ccx4Ggnl5eVwcnJCeHg4AgICNMt4AG7Ts78/ty5tzhygvJxvRe+EZppPbCy3gHD4cOD4cWY8jYCKigq4urri7NmzOHnyJD766CO+JSkGBwcuwJ2fH/Cvf3FhftUVvsd9cufGDSKhkGjYMKL8fL7VaDy7d++mbt26UefOnXmb8xGLxTRv3jzS1tam48ePK71+XvDx4faCLVhAJBbzraZBaJb5/Pkntzt94EAiFZj4bEzwNeEsFotp6dKlBIC8vLyUWjfvHD7M7YZftkwtDUhz4vk8fMhtl7Cw4CaaVXTRG0O+fPvtt/j111+xd+9euLq68i1HucydCxQVAYsXc1uENm5Uq3hAmmE+aWncZJxQCISFAe+9x7cihhLYsGEDNm3ahG3btuGLL77gWw4/fPEFt/hw5UouROt33/GtSGbU33yePQNGj+ZCU168CLRqxbcihhLYuXMn1q5di/Xr12PVqlV8y+GXFSuAwkJg7VrOgNSkPdTbfF694oZapaVcYjYLC74VMZTAgQMHsGLFCqxevRrfqdE3vUL59lugoIBLcNm0KVDf7Ko8oL7mk5vLLbbKzuaMp0MHvhUxlICPjw8WLVqEJUuWKCfYuzqxYQOQkwMsWAA0a8btB1Nh1HOdT3Ext3L50SNu12+XLnwrYiiBkJAQfPrpp3BxccEvv/zCjOefaGlxqXhmzACcnLgNqSqM+plPeTnXsFevAmfPAn368K2IoQRiY2Mxbdo02Nvb49ChQ9DWVr9fXaWgowP8/js3DzplCnD9Ot+KakS9foJEwMKFnOmcOMGtYGbwijLSJd+9excTJkxA//79cfz4ceip+Z4mhaOvz4WN6dOHWxGdlMS3ompRr42lX38NbN3KObuLC99qGG+hqI2lqampGDp0KFq2bInIyEg0bdpUbmVrPDk5XIzy7GwuT7yVFd+KpFCfns/WrdyxcycznkbCy5cvYWdnB0NDQ4SEhDDjqS/NmgHnzwMGBlz0zhcv+FYkhXqYz3/+w/V61q4Fli3jWw1DCeTm5sLe3h55eXkIDQ2FmZkZ35LUE3NzbuFtQQH3dFgk4luRBNU3n9OngfnzgUWLgB9+4FsNQwkUFxfD0dERjx8/xvnz5/H+++/zLUm9ef997qlwWhqXHaOwkG9FAFTdfCIigE8+4QJo796tVvtWGA2jMibP1atXce7cOfTu3ZtvSZpBz55cOp4bN7icYCoQC0h1zefmTW4tz8iRwH//yz1CZGg0RISFCxdKYvIMGzaMb0mahY0NlxMsJIQbSfD8rEk1zefhQ2582r07FzSJBQNrFLi5ueE///kPvLy8MGHCBL7laCbjxnFzqJ6ewPff8ypF9bZXvHjBNVDz5lw3sUkTvhUxlICHhwe2bt0KDw8PzJkzh285mo2LC5CZCaxezU1IL17Mjw6e4wlJk5tL1K8fUZs2RP9L88JQbeQRydDHx4cAkJubmwIUMqpFLCZavpyLhliPFEnyRHUWGZaVcXGXr14FoqMBNtGoVjR0kWFERATs7e0xa9YsHDlyhO3XUiZiMeDszD1RDg0FRoxQavWqMedDBMybxz3d8vdnxtNIuH37NqZMmQJbW1t4enoy41E22trAkSPAsGHA5MnAnTvKrV6ptdXEt99yWyYqN8QxNJ709HQ4ODigY8eOOHnyJNuvxRcCAfcErEMH7iFPerrSqubffHbvBjZtArZv59b0MDSe169fw97eHgKBAEFBQTAxMeFbUuPG1BQIDuaMaNw4bi+YEuDXfE6dApYu5eLPrlzJqxSGcigqKsLkyZPx8uVLhISEsG0TqoKZGbf+JytLaaug+TOf6GhusmvWLODnn3mTwVAeFRUVmD17Nm7evInAwEB07tyZb0mMt+ncmVvecusWNwpR8CpofswnKYmb4BoyBPDy4ia+GBoNEWHp0qU4c+YMjh8/jsGDB/MtiVEdgwZxC3uDg7nMGAp8GK78v/onT7iJrfbtuSdbAoHSJTCUz+bNm7F371789ttvmDhxIt9yGLVhb8+tgD50CFi3TnH1KHVVUU4OUc+eRO3bEz19qtSqGYpBlkWGXl5eBIDc3d15UMhoMJs3cxlR9+9XSPHKM5/iYiJbW6JmzYiSkpRWLUM51JQuOTg4mHR0dGj+/PkkVsOUvo0asZhoyRIibW2igAC5F6+cFc5iMRf0PSCAi6g/dKjCq2Qol+pWOMfHx8PW1hajRo2Cv78/dHVVbyshow4qKrhsGCEh3CJgOc7VKX7Oh4jLoHjyJHD0KDOeRsKjR48wYcIE9OzZE8eOHWPGo67o6AB//AH068dtf3r4UG5FK77ns307l0Vx715u9pyhkbzd8ykuLsbQoUOhpaWFmJgYtGjRgm95jHclO5vrOJSXAzExiCq8B797figoLUCPVj3g2scVzY2a16tIxZrP0aPA7NnAmjVcNkWGxlJpPs+ePYOjoyPS09MRExPDQqBqEqmpEFsPRrJhIQY65aPgrQfVBroG2OWwC/P6zZO5OMUNuy5eBObOBVxdgZ9+Ulg1DNXC1dUV9+7dQ1BQEDMeTcPKCv9aaIa2z/LhexLQqfj7reLyYiw4uwCBDwJlLk4x5pOYCEydCowZAxw8yGIvNwIqO9Dh4eHw8/NDv379eFbEkDfhKeE4on0b02YCdo+A/ecAvDVuIhA2Xd4kc3nvNAtIRMjLy5M+mZbGbU7r2JFbqFRUxB0MjaKkpAQlJSWS1xs3bgQAbN++HdbW1sjNzeVLGkNBHI0/ChQDYW0BFwfgQCDwlzGw5a1Q21ceXkFubi5MTEzqDJHyTnM+leN8BoPBeBtZgsq9k/n8s+czcOBAxF2/Drx5w2VLfIvc3Fy0a9cOGRkZNYoaOHAg4uLiaqxPke8zffV7v7LnExYWhs8//xzTp0/HiRMnkJSUBAsLC971/RNVaz911YcVAN6aaBYWAyKD/704ADRZ0gRPVz2VqefzTsMuLS0tqYbS0dGBqVAI1NIbMjU1rbFxdXR0anVLRb/P9NXv/atXr+LLL7/E1KlT8fPPP+PEiRMwMTFRGX3VoUrtp476dA11Ua7/9253ifEAgDbw6aBPZQ6jK9cJ5y+//FKh9yv6/bpg+v5+/8GDB5g4cSL69+8Pb29v6MiQV421n/rr2zCm5iUzLW1bwt3Wvc4yKlFaAPmGBhhXFkyf7GRmZmLIkCEwMDDA5cuX8d577+HJkyeSYUPbtm151VcdqtR+1aFO+sKehGHT5U248fwGAKCJfhPM7jUbP476ES2NW8pcptLWvAsEAqxbtw4CFQ2hwfTJRl5eHiZMmICSkhJERkbivffek+h7+19VQ1XarybUSd+07tMwrfs0pL1JQ0FZASyFljDWN653maqTOoeh8pSVlWHixIm4evUqoqOjpfKoq/o3N0P1YLv9GDJBRJg3bx4iIiIQEhIiZTwMRkNg5sOQibVr1+L333/H0aNHMZqlN2LIARY8mVEne/fuxcaNG7Ft2zY4OTlJvbdnzx50794dAwcO5EkdQ11hcz6MWvH398e0adOwbNky7Nixo8aFY2zOh1FfFNrz2bBhA4YMGQIjIyM0bdpUpnvmzp0LLS0tqcPa2loltBER3N3d0aZNGxgaGsLW1hZ3796VuzYAyMnJgYuLC4RCIYRCIVxcXPDmzZta75F32125cgXOzs6YMWMGtm/frvLpjPfu3YsOHTrAwMAA/fv3R3R0dI3XRkZGVmkrLS0t3L9/X+66Ll26hEmTJqFNmzbQ0tLC6dOn67wnKioK/fv3h4GBAd5//33s379f7roaqk9ebadQ8yktLcWMGTPwRT2DiNnb2+P58+eSIygoSCW0bd26FTt27MDu3bsRFxcHMzMzfPTRR1U318oBZ2dnJCYmIiQkBCEhIUhMTISLi0ud98mr7e7du4dJkyZh8ODBOHLkCLRVPL2Rr68vli9fjm+//RYJCQkYPnw4HBwckF5H+t/k5GSp9urUqZPctRUUFKBPnz7YvXu3TNenpKRg/PjxGD58OBISErBmzRosXboUfn5+ctfWEH2VvHPbyT0qdDUcPnyYhEKhTNe6urqSo6OjQvW8jazaxGIxmZmZ0ebNmyXniouLSSgU0n45R/dPSkoiAHT16lXJudjYWAJA9+/fr/E+ebXd06dPqX379tSjRw/KycmR6Z6aAsgri0GDBtGiRYukznXt2pXc3NyqvT4iIoIAyPz55AUA8vf3r/Wa1atXU9euXaXOLVy4kKytrRWojEMWffJqO5X8OouMjESrVq3QuXNnzJ8/Hy9fvuRbElJSUpCZmQk7OzvJOYFAgJEjRyImJkaudcXGxkIoFEol1rO2toZQKKyzrndtu9zcXIwfPx5isRghISEyD0n5pLS0FDdu3JD62QCAnZ1dne3Vt29fmJubY8yYMYiIiFCkTJmJjY2t8lnGjRuH+Ph4lJWV8aSqKu/adipnPg4ODvjjjz8QHh6O7du3Iy4uDqNHj5aKHcMHmZmZAIDWrVtLnW/durXkPXnW1apVqyrnW7VqVWtd79p2paWl+Pjjj5Gamorg4GCV3CZRHVlZWaioqKjXz8bc3BwHDhyAn58fTp06hS5dumDMmDG4dOmSMiTXSmZmZrWfpby8HFlZWTyp+ht5tV291/m4u7tj/fr1tV4TFxeHAQMG1LdoAMCsWbMk/+/ZsycGDBgAS0tLBAYG4uOPP+ZVG4Aqk65EJPNErKz6qqtHlrrepe3EYjE+++wzREdHIzQ0FD179qz1elWkPj+bLl26oEuXLpLXNjY2yMjIwLZt2zBixAiF6pSF6j5Ldef5QF5tV2/zWbJkCT755JNar7GysqpvsTVibm4OS0tLPJQhZYcitZmZmQHgvpXMzc0l51++fFnlW+pd9d2+fRsvXryo8t6rV69krguQve2ICCtXroSPjw98fX0xcuRImetQBVq0aAEdHZ0qvZz6/GwAbmjr7e0tb3n1xszMrNrPoquri+bN65chQlk0pO3qbT4tWrRQaiqU7OxsZGRkSP3B14QitXXo0AFmZmYICwtD3759AXDDlKioKGzZskWmMmTVZ2NjA5FIhOvXr2PQoEEAgGvXrkEkEmHIkCEya5a17TZv3oxffvkFe/fuxYwZM2QuH+AWGe7ZswcVFRV1X6wg9PX10b9/f4SFhWHq1KmS82FhYXB0dJS5nISEBJl+zxSNjY0Nzp49K3UuNDQUAwYMgJ6eHk+qaqdBbfdO09V1kJaWRgkJCbR+/Xpq0qQJJSQkUEJCAuXl5Umu6dKlC506dYqIiPLy8mjVqlUUExNDKSkpFBERQTY2NmRhYUG5ubm8aiMi2rx5MwmFQjp16hTduXOHnJycyNzcXO7aiIjs7e2pd+/eFBsbS7GxsdSrVy+aOHGi1DXyaLuDBw/KJY8630+7jh07Rnp6euTp6UlJSUm0fPlyMjY2ptTUVCIicnNzIxcXF8n1Hh4e5O/vTw8ePKA///yT3NzcCAD5+fnJXVteXp7k9wsA7dixgxISEigtLa1abY8fPyYjIyNasWIFJSUlkaenJ+np6dHJkyflrq0h+uTVdgo1H1dXVwIX317qiIiI+FsAQIcPHyYiosLCQrKzs6OWLVuSnp4etW/fnlxdXSk9PZ13bUTc4/Z169aRmZkZCQQCGjFiBN25c0fu2oiIsrOzafbs2WRiYkImJiY0e/bsKo8237XtTp06Rdra2rR48eJ3zqPOt/kQEe3Zs4csLS1JX1+f+vXrR1FRUZL3XF1daeTIkZLXW7ZsoY4dO5KBgQE1a9aMhg0bRoGBgQrRVflo+p+Hq6trtdqIiCIjI6lv376kr69PVlZWtG/fPoVoa4g+ebUd217RSImKisK4cePg6OiIo0ePyhSJsDbY9gpGfVG5R+0MxZOYmIjJkydj2LBh+P3339/ZeBiMhsDMp5Hx6NEj2Nvbo1OnTvD391fZyHkMzYeZTyOicoW2UChEcHAwTExM+JbEaMSwYGKNBJFIBHt7exQXF+PKlSto2VL2QN8MhiJg5tMIKCoqgqOjI9LS0hAdHS3XRaAMRkNhwy4NpzJ0yPXr13Hu3Dm5b5tgkQwZDYU9atdgKioqMHv2bPj7++Ps2bNVdkrLE/aonVFf2LBLQyEiLFy4ECdOnMCJEycUajwMRkNg5qOBEBFWrVoFT09PHDlypM4d7QwGH7A5Hw3khx9+gIeHB3bv3o1PP/2UbzkMRrUw89EwPDw84O7ujo0bN+LLL7/kWw6DUSPMfDSIQ4cOYeXKlXBzc8M333zDtxwGo1aY+WgIvr6+WLBgARYvXoyNGzfyLYfBqBNmPhrAmTNnMGfOHMyZMwe7du1SiVCbDEZdMPNRc86dO4cZM2bA0dER//nPf5SeX4stMmQ0FLbIUI0JDg7GlClTMGHCBPj6+vIaYpMtMmTUF9bzUVPOnz+PqVOnwt7eHseOHVPZ2L4MRk0w81FDLly4gClTpmDs2LE4fvw49PX1+ZbEYNQbZj5qRnh4OCZPngxbW1ucPHmSBQNjqC3MfNSIqKgoTJo0CcOGDYO/vz8MDAyqXJOTkwMXFxcIhUIIhUK4uLjgzZs3tZY7d+5caGlpSR3W1tYK+hQMBgfb26UmXL58GRMmTIC1tTXOnDlTrfEAgLOzM548eYKQkBAAwIIFC+Di4lIlD9Q/sbe3x+HDhyWv2VCOoWiY+agB0dHRGD9+PAYOHIizZ8/C0NCw2uvu3buHkJAQXL16FYMHDwYAHDx4EDY2NkhOTpZKcftPBAKBJCsrg6EM2LBLxbl48SLs7e0lxmNkZFTjtbGxsRAKhRLjAbg0tkKhEDExMbXWExkZiVatWqFz586YP38+Xr58Wev1JSUlyM3NlToYjPrAzEeFCQ4OxoQJEzB8+HAEBgaiSZMmtV6fmZmJVq1aVTnfqlWrKrm/38bBwQF//PEHwsPDsX37dsTFxWH06NEoKSmp8Z5NmzZJ5pWEQiHatWsn+wdjMMCGXSrLmTNnMHPmTIwbNw69e/eutccDAHFxcQBQ7dYKIqp1y8WsWbMk/+/ZsycGDBgAS0tLBAYG1hgL6JtvvsHKlSslr3Nzc5kBMeoFMx8V5MSJE3B2dsaUKVPwxx9/IDc3F3PmzKn1HisrK9y+fRsvXryo8t6rV6/QunVrmes3NzeHpaUlHj58WOM1AoGAPeZnvBPMfFQMb29vuLq6wsnJCV5eXtDV1UWLFi3QokWLOu+1sbGBSCTC9evXMWjQIADAtWvXIBKJMGTIEJk1ZGdnIyMjA+bm5g3+HAxGnbxbinmGPNm7dy9paWnR559/TuXl5Q0qw97ennr37k2xsbEUGxtLvXr1ookTJ0pd06VLFzp16hQREeXl5dGqVasoJiaGUlJSKCIigmxsbMjCwoJyc3NlrlckEhEAEolEDdLNaHww81EBxGIx/fDDDwSAli9fThUVFQ0uKzs7m2bPnk0mJiZkYmJCs2fPppycHKlrANDhw4eJiKiwsJDs7OyoZcuWpKenR+3btydXV1dKT0+vV73MfBj1he1q5xmxWIzly5dj165d2LBhA7755hu1jMfDdrUz6gub8+GRsrIyzJ07Fz4+Pti/fz8WLlzItyQGQ2kw8+GJwsJCTJ8+HRcuXICvry9mzJjBtyQGQ6kw8+GBnJwcTJw4Ebdu3UJgYCA++ugjviU1mD179mDPnj2oqKjgWwpDzWBzPkomJSUF48ePx6tXrxAUFCR5JF5fSktLUV5eLmd1DSc/Px8jRozApUuX6lyJzVB/dHV133nzMTMfJRIXF4eJEyfCxMQEwcHB6NSpU4PKKS0txd27dyEWi+WskMGQDW1tbfTo0eOdDIgNu5REQEAAnJyc0Lt3bwQEBKBly5YNLqu8vBxisRhWVlY17nBnMBRFUVERUlNTUV5ezsxH1dm9ezeWLVuGqVOn4r///a/cDMPQ0LDOPV8MhqIQiUQoLi6GQCCAsbFxve9n5qNAKioq8NVXX8HDwwMrV67Ezz//rPTUNgyGojh37hwKCgpgamqKWbNm1duAmPkoiDdv3sDJyQmhoaHYtWsXlixZwrckBkOuGBsbo6ysDLm5uSgpKWHmowrcv38fjo6OePXqFc6fP4+xY8fyLYnBkDuVkQ1KS0sbdD8bA8iZoKAgDB48GLq6urh+/TozHgajBpj5yAkiwtatWzFx4kSMHDkSsbGx+OCDD/iWxWCoLMx85EB+fj5mz56Nr7/+GmvWrMHp06fZ5koGow6Y+bwjSUlJGDRoEAICAuDr64uffvqJPdHiCSsrK+zcuZNvGQwZYX8l74C3tzcGDhwIbW1txMfHY+bMmXxLUkm8vLzQtGlThdcTFxeHBQsWKLyehqLIdnB3d8eHH36okLIVBTOfBlBcXIyFCxfCxcUF06dPx7Vr19C1a1e+ZTV6WrZsqbKLLsvKyviWoHIw86knSUlJsLa2xpEjR3Dw4EF4eXk1aHWnKmBra4slS5ZgyZIlaNq0KZo3b461a9fi7e1+WlpaOH36tNR9TZs2hZeXFwAgNTUVWlpaOHXqFEaNGgUjIyP06dMHsbGxALh8YJ999hlEIpEkFbO7uzsAbnf/p59+imbNmsHIyAgODg5SQevT0tIwadIkNGvWDMbGxujRoweCgoJq/Dz/HHZpaWnht99+w8SJE2FkZIRu3bohNjYWf/31F2xtbWFsbAwbGxs8evRIck9lD+K3335Du3btYGRkhBkzZkilnBaLxfjhhx/Qtm1bCAQCfPjhh5IMsW+3yfHjx2FrawsDAwN4e3vX2A7e3t4YMGAATExMYGZmBmdnZ6m8aZGRkdDS0sLFixcxYMAAGBkZYciQIUhOTgbA9ajWr1+PW7duScqu/PmIRCIsWLAArVq1gqmpKUaPHo1bt25Jyr516xZGjRoFExMTmJqaon///oiPj6+xjeUKf0EU1QuxWEy7du0iAwMD6tatGyUmJvKmpaCggOLj46mgoKDKe/df3afPz3xOo7xG0YZLG6igtOo1lYwcOZKaNGlCy5Yto/v375O3tzcZGRnRgQMHJNcAIH9/f6n7hEKhJAxrSkoKAaCuXbvSuXPnKDk5maZPn06WlpZUVlZGJSUltHPnTjI1NaXnz5/T8+fPKS8vj4iIJk+eTN26daNLly5RYmIijRs3jj744AMqLS0lIqIJEybQRx99RLdv36ZHjx7R2bNnKSoqqsbPY2lpSR4eHlLaLSwsyNfXl5KTk2nKlClkZWVFo0ePppCQEEpKSiJra2uyt7eX3LNu3ToyNjam0aNHU0JCAkVFRdEHH3xAzs7Okmt27NhBpqam5OPjQ/fv36fVq1eTnp4ePXjwQKpNrKysyM/Pjx4/fkxpaWk1toOnpycFBQXRo0ePKDY2lqytrcnBwUFSX0REBAGgwYMHU2RkJN29e5eGDx9OQ4YMISIuFO6qVauoR48ekrILCwtJLBbT0KFDadKkSRQXF0cPHjygVatWUfPmzSk7O5uIiHr06EFz5syhe/fu0YMHD+j48eN1/m5X/v6dPHmSDh06RB4eHpLy6gMzHxl4/vw5OTg4EABasmQJFRYW8qqnJvNJf5NOzTY3I7hDcth729dQCmc+3bp1I7FYLDn39ddfU7du3SSvZTWfQ4cOSd6/e/cuAaB79+4REdHhw4dJKBRKlfHgwQMCQFeuXJGcy8rKIkNDQzp+/DgREfXq1Yvc3d3rbpD/UZ35rF27VvI6NjaWAJCnp6fknI+PDxkYGEher1u3jnR0dCgjI0NyLjg4mLS1ten58+dERNSmTRvasGGDVN0DBw6kxYsXS7XJzp07pa6prh2q4/r16wRAYk6V5nPhwgXJNYGBgQSAioqKJLr79OkjVc7FixfJ1NSUiouLpc537NiRfvvtNyIiMjExIS8vrzo1vY28zIcNu+ogICAAvXr1wo0bNxAYGIhdu3ap7E7yQzcPIac4R+pcyF8h+PPlnzXeY21tLRUz2sbGBg8fPqx3cLDevXtL/l+Zcqe2lMv37t2Drq6uVGrn5s2bo0uXLrh37x4AYOnSpfjpp58wdOhQrFu3Drdv366Xpn/qqsxd1qtXL6lzxcXFUume27dvj7Zt20pe29jYQCwWIzk5Gbm5uXj27BmGDh0qVc/QoUMluisZMGCATBoTEhLg6OgIS0tLmJiYwNbWFgCQnp5e42eRpY1v3LiB/Px8NG/eHE2aNJEcKSkpkqHmypUrMW/ePIwdOxabN2+WGoIqGmY+NfDq1SvMnj0bjo6OsLa2xp07dzB+/Hi+ZdVKdlF29ecLqz8vC1paWlJzQED1k6d6enpS9wCoNd7QP8t8+3zl/fPmzcPjx4/h4uKCO3fuYMCAAdi1a1e99Fenq75aK69526T/GeSfqskKK8tcYEFBAezs7NCkSRN4e3sjLi4O/v7+AFBl20J9dYvFYpibmyMxMVHqSE5OxldffQWAm+O6e/cuJkyYgPDwcHTv3l1Sv6Jh5vMPiAg+Pj7o3r07goODceTIEQQEBFSbA13VmNp1apVzZk3MYNPOpsZ7rl69WuV1p06doKOjA4B7gvT8+XPJ+w8fPkRhYWG9dOnr61fpSXXv3h3l5eW4du2a5Fx2djYePHiAbt26Sc61a9cOixYtwqlTp7Bq1SocPHiwXnU3hPT0dDx79kzyOjY2Ftra2ujcuTNMTU3Rpk0bXL58WeqemJgYKd3VUV073L9/H1lZWdi8eTOGDx+Orl271tqbqU/Z/fr1Q2ZmJnR1dfHBBx9IHW8noezcuTNWrFiB0NBQfPzxxzh8+HC9628IzHze4smTJ5g8eTKcnZ0xevRo3Lt3D59++qnapLIZ8/4YbB27FaYCbnV1l+Zd4D/LH/o6NQd8ysjIwMqVK5GcnAwfHx/s2rULy5Ytk7w/evRo7N69Gzdv3kR8fDwWLVok9Q0sC1ZWVsjPz8fFixeRlZWFwsJCdOrUCY6Ojpg/fz4uX76MW7duYc6cObCwsICjoyMAYPny5Th//jxSUlJw8+ZNhIeH1/kHLg8MDAzg6uqKW7duITo6GkuXLsXMmTNhZmYGAPjqq6+wZcsW+Pr6Ijk5GW5ubkhMTJRqN1nboX379tDX18euXbvw+PFjBAQE4Mcff6y3ZisrK6SkpCAxMRFZWVkoKSnB2LFjYWNjgylTpuD8+fNITU1FTEwM1q5di/j4eBQVFWHJkiWIjIxEWloarly5gri4OKW0MQD2tIuIqKysjH755RcyNTUlc3PzKhOsqkZtT7uIiApLCylDlFHte28zcuRIWrx4MS1atIhMTU2pWbNm5ObmJjUB/fTpU7KzsyNjY2Pq1KkTBQUFVTvhnJCQILknJyeHAFBERITk3KJFi6h58+YEgNatW0dERK9fvyYXFxcSCoVkaGhI48aNkzwxIiJasmQJdezYkQQCAbVs2ZJcXFwoKyurxs9T3YTz2z/L6rRWTuZWJlasnLjdu3cvtWnThgwMDOjjjz+m169fS+6pqKig9evXk4WFBenp6VGfPn0oODi41npqa4ejR4+SlZUVCQQCsrGxoYCAAKn7/6mRiCghIYEAUEpKChERFRcX07Rp06hp06ZSSSFzc3Pp3//+N7Vp04b09PSoXbt2NHv2bEpPT6eSkhL65JNPqF27dqSvr09t2rShJUuWSCaxa0JeE86NPoZzVFQU/v3vf+PPP//EggULsHnzZqWsxn0XCgsLce/ePXTr1u2dFtXZ2triww8/ZFsS3sLd3R2nT59GYmIi31JUlsrfv9TUVLx58wZ5eXn49NNP8d5779WrnEY77EpLS4Ozs7NksVlcXBz279+v8sbDYGgKjc58srOzsWrVKnTu3Bnh4eHw8vLClStX0L9/f76lMRiNikYTybCwsBC//PILNm/eDLFYjLVr12LFihWNOsdUZGQk3xJUDnd3d8m2B4Zi0Xjzyc/Px4EDB7Bt2zZkZWVh0aJFWLt2rVo8OmcwNBmNNZ83b95g165d+OWXXyASieDi4oJvv/0WHTt25Fsag8GABppPamoq9u3bh3379qG0tBTz5s3DV199BUtLS76lMRiMt9AI8xGLxQgNDcWePXsQGBgIU1NTLFq0CCtXrpQsDGMwGKqFWpvP06dP8ccff+C3337D48eP8eGHH+LAgQNwcnJS2xg7DEZjQe3MJycnB2fOnIG3tzfCw8Ohr6+P6dOnw9vbu8oObQaDobqohfmkpqbi7NmzOH36NKKioiAWi2Fra4tDhw5h2rRpEAqFfEvkhaKiIr4lMBoh8vq9U0nzefHiBSIjI3Hx4kWEh4fj0aNH0NPTk2xynDx5Mtq0acO3TN7Q1dWFtrY2UlNT+ZbCaKQQUb1jPv0TXs2noqICGRkZuH//Pm7cuIH4+HjEx8fjyZMnAICuXbvC3t4eY8aMwejRoxttD+ef6Ovro0ePHsjOzsa5c+dgbGwMgUAgdc2DBw8QExODuXPn1lmet7c3evXqhT59+gDgJvB///13DB48WOYdzmVlZTh8+DA+++yzeu96Z6gfFRUVKC8vf6cy5G4+mZmZePLkCUpKSiSHSCRCVlYWsrKy8OrVK6SmpuKvv/5CSkqKJDCVUChE//794ezsjAEDBmDIkCGwsLCQtzyNQV9fHwKBAAUFBSgrK6tiPq9evcLTp0+lAp9Xh0gkQnJyMgYNGiR1rZaWFm7duiWJmFcXpaWlyMjIQE5ODvT1aw7hwdAsSkpKGnyv3M3H09MTa9eurXJeX18fLVq0QIsWLWBpaYnx48dLBTfq0KEDS7ZXTwQCAUxNTZGbm1sl6l1paSl0dXWRl5dXaxlZWVkQCAQgIqlrDQwMUFBQUOP9FRUVUt3uSgPMy8tj5tPIMDU1rfLlJwtyD6mRmZmJFy9eSL6Z9fX1IRQK0aRJE/YkqoG4u7tj/fr11b6nq6sLHR0dBAcHS4ZNAODr64t169bh/v37tZYdHx+PyZMnIzExUWrLyf/93//h2bNnOHr0aLX3bd++Hdu3b69yPjk5GSYmJrJ8LIaGIBAIGrS0pdHH81EHKoestWFlZQUDAwPJay8vLyxfvrzOYdfjx4/RsWNH3Lx5E3379pWcd3R0RNOmTXHkyJFq76scUleSm5uLdu3aQSQSsTz1DJlQyaddDGkqh6uKoEOHDjAzM0NYWJjEfEpLSxEVFYUtW7bUeJ9AIGhQV5vBqIRNsmgY6enpSExMRHp6OioqKiQZC/Lz8yXXdO3aVZKhQEtLC8uXL8fGjRvh7++PP//8E3PnzoWRkRGcnZ35+hiMRgDr+WgY33//vdRQqbI3ExERIckHlZycDJFIJLlm9erVKCoqwuLFi5GTk4PBgwcjNDS0XnM3JiYmEIlEbL6HITNszofBYPACG3YxGAxeYObDYDB4gZkPg8HgBWY+DAaDF5j5MBgMXmDmw2AweIGZD4PB4AVmPgwGgxeY+TAYDF5g5sNgMHiBmQ+DweAFZj4MBoMX/h+84Kg9MX96ZwAAAABJRU5ErkJggg==\n", "text/plain": [ "Graphics object consisting of 3 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f(x) = sin(x)\n", "g(x) = cos(x)\n", "p = plot(f(x),(x,-pi/2,pi/2), color='black')\n", "q = plot(g(x), (x,-pi/2, pi/2), color='red')\n", "r = point([(0,1), (pi/4,sqrt(2)/2), (pi/2,0)], size=50, color='green', legend_label='puntos importantes')\n", "s = p + q + r\n", "s.show(figsize=3)" ] }, { "cell_type": "markdown", "id": "173fffd5", "metadata": {}, "source": [ "
\n", " Ejercicio 6. \n", " Representa en una misma gráfica las siguientes funciones en el intervalo [0,1], cada una con un estilo diferente. Marca también los puntos de corte que aparecen (aproximadamente). Hazlo en tamaño intermedio (entre el tamaño por defecto y el pequeño de los ejemplos) para que se distingan los puntos.\n", "$$\n", " 3\\,cos(\\pi x),\\qquad 1+e^x,\\qquad \\frac{1}{1+x}\n", "$$\n", "
\n" ] }, { "cell_type": "markdown", "id": "ff032dc9", "metadata": {}, "source": [ "## Consejos para trabajar con Sage" ] }, { "cell_type": "markdown", "id": "0ecc64b2", "metadata": {}, "source": [ "* Cuando tengas varios ejercicios en una hoja, trabaja cada uno independientemente, pero ten en cuenta que todo está en una misma hoja. Por ejemplo, si dices `x=3` y más adelante quieres usar `x` como la variable de una función, puedes tener problemas. Puedes usar la función `reset()` para limpiar la memoria de Sage, o usar `var` para borrar una variable.\n", "* Sage da información sobre los errores que se encuentra. A veces esa información te ayudará y a veces no. Revisa cada línea de código y divide el código en trozos para ver si los resultados intermedios son lo que deberían ser.\n", "* Para demostrar que sabes lo que estás haciendo, usa suficientes explicaciones en celdas de texto. Por otra parte, no entregues cosas innecesarias (como un cálculo con resultado muy largo que tú no has mirado después, o imágenes más grandes de lo necesario)." ] }, { "cell_type": "markdown", "id": "a21c0236", "metadata": {}, "source": [ "Aquí termina el tutorial. Cuando hayas completado los ejercicios, sigue las instrucciones de entrega en el aula virtual." ] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.5", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" } }, "nbformat": 4, "nbformat_minor": 5 }