{ "cells": [ { "cell_type": "code", "execution_count": 44, "id": "e8bef91e", "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left( x, y \\right) \\ {\\mapsto} \\ \\left(x - e^{\\left(x^{2.00000000000000} + y^{2.00000000000000}\\right)} + 2.00000000000000,\\,y + \\sin\\left(x y\\right) - \\frac{1}{10}\\right)$$" ], "text/plain": [ "(x, y) |--> (x - e^(x^2.00000000000000 + y^2.00000000000000) + 2.00000000000000, y + sin(x*y) - 1/10)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "F(x,y) = ( 2. - exp(x^2.+y^2.) + x , sin(x*y)-1/10 + y )\n", "show(F)" ] }, { "cell_type": "code", "execution_count": 45, "id": "24cc1e75", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(1.00000000000000, -1/10)" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "F(0,0)" ] }, { "cell_type": "code", "execution_count": 57, "id": "01a38b61", "metadata": {}, "outputs": [], "source": [ "x0 = (.6,0.)" ] }, { "cell_type": "code", "execution_count": 68, "id": "1847b271", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(-Infinity, 1.60992670690903)" ] }, "execution_count": 68, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x0 = F(*x0)\n", "x0" ] }, { "cell_type": "code", "execution_count": 48, "id": "0ac214be", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAGkCAYAAAC4v7h9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABc80lEQVR4nO3deViUVfsH8O+wi8K4IIuKirniFiIqprkVLmlumVtmmWaGmdpqm1ZvmWnmW2L+yuVtsTRzaXEv1xQVFXPf1xTcQsAFFHh+f9yNI4LIMsOZ55nv57rOdR6GYbyZpuGes9zHpGmaBiIiIiLSLRfVARARERFR0TChIyIiItI5JnREREREOseEjoiIiEjnmNARERER6RwTOiIiIiKdY0JHREREpHNM6IiIiIh0zk11ALaWlZWFs2fPwsfHByaTSXU4RERERIWiaRpSU1NRoUIFuLjkPQZnuITu7NmzCA4OVh0GERERkU2cPn0alSpVyvM+hkvofHx8AMgv7+vrqzgaIiIiosJJSUlBcHDwrdwmL4ZL6CzTrL6+vkzoiIiISPfys4TMrpsi1q9fjy5duqBChQowmUxYvHjxPX9m3bp1CA8Ph5eXF6pVq4bp06fbM0QiIiIi3bNrQnf16lU0bNgQU6dOzdf9jx8/jk6dOqFly5aIj4/HG2+8gREjRmDBggX2DJOIiIhI1+w65dqxY0d07Ngx3/efPn06KleujClTpgAA6tSpg23btmHSpEno2bOnnaIkIiIi0jeHqkMXGxuLqKiobLe1b98e27Ztw82bN3P9mfT0dKSkpGRrRFRE168Dhw8DR46ojoSIiPLBoRK6xMREBAQEZLstICAAGRkZuHjxYq4/M378eJjN5luNJUuIbGD2bKBmTeDVV1VHQkRE+eBQCR2QcyeHpmm53m4xZswYJCcn32qnT5+2e4xEhlehgvRnz6qNg4iI8sWhypYEBgYiMTEx223nz5+Hm5sbypUrl+vPeHp6wtPTszjCI3IeloTuzBm1cRARUb441AhdZGQkVq1ale22lStXonHjxnB3d1cUFZETqlhR+oQEICtLbSxERHRPdk3orly5gp07d2Lnzp0ApCzJzp07cerUKQAyXfrkk0/euv9zzz2HkydPYvTo0di/fz9mzZqFmTNn4uWXX7ZnmER0p4AAwGQCMjOB8+dVR0NERPdg14Ru27ZtCAsLQ1hYGABg9OjRCAsLwzvvvAMASEhIuJXcAUBISAiWLl2KtWvX4v7778f777+Pzz77jCVLiIqbmxsQGCjXnHYlInJ4Js2y68AgUlJSYDabkZyczKO/iIoiIgLYtg34+Wfg0UdVR0NE5HQKktM41Bo6InIglSpJz53jREQOjwkdEeXOUtORU65ERA6PCR0R5Y4jdEREusGEjohyZxmhY0JHROTwmNARUe6Y0BER6QYTOiLK3e0JHYsLExE5NCZ0RJS7ChUAFxfg5k0WFyYicnBM6Igod+7u1jNdT55UGwsREeWJCR0R3V3lytIzoSMicmhM6Ijo7qpUkZ4JHRGRQ2NCR0R3V7Wq9EzoiIgcmmESupiYGISGhiIiIkJ1KETGwYSOiEgXDJPQRUdHY9++fYiLi1MdCpFxWBK648eVhkFERHkzTEJHRHZgSehOnAA0TWUkRESUByZ0RHR3ll2uV68CFy+qjYWIiO6KCR0R3Z2XF1Cxolxz2pWIyGExoSOivIWESH/smNo4iIjorpjQEVHeqlWT/uhRtXEQEdFdMaEjorzdd5/0HKEjInJYTOiIKG+WhI4jdEREDosJHRHlrXp16ZnQERE5LCZ0RJQ3ywjd338D16+rjYWIiHLlpjoAIsru5k0gMRE4exY4f17Kv126JH1KirTUVODKFSAtDUhPl3bzptT+tdT/dXUFPDwAd3fA0xMoWVJaqVKAry9QpgxQtqw0f38gMFCavz/gdvs7Q7lygNkMJCfLKF29ekqeFyIiujsmdETFTNOAM2eAgwelHTsmBzGcOAGcPi1JnEouLkBQkNQUDg4GQkJMeKlMDZRP3oakrYdRum49mExqYyQiouyY0BHZ0T//APHxwK5dwO7d0vbvl4MX8uLuLkmVvz9QvrwMkpUrB5QuDfj4SCtVSur+ennJCJybG2Ay4VaylZkpo3Y3b8oI3tWrMqp35YoMtiUlSbt0SZLIxETpMzMl4TxzBoiNlceqj5roj2346JlD+PIloG5dafXrA2FhQMOGEg8REanBhI7IRq5dA7ZtkyRo2zZpJ07kfl83NynvVquW7DmoWlVa5cpyMEO5cjJSVtyysiSpO30aOHVK2tGjQObymsBRoBYO4fJlYONGaRYmE1CzJhAeDjRtKi0sTKZ8iYjI/kyaZqwTt1NSUmA2m5GcnAxfX1/V4ZCBpaYCGzYAa9YA69cDO3YAGRk573fffTKCVb++tHr1JJlzdy/+mAvthx+Afv2QFfkAdn/xJ/buBfbulZHHHTtkvd+dPD2BZs2AVq2kRUYCJUoUf+hERHpVkJyGI3RE+ZSRAWzZAqxYAaxaBcTFyfTk7SpUAJo3B5o0kdGqRo1kmlT3atUCALgcOYSGDSVBvd3585LYxcXJc7R5s0zlrlsnDZAEr0UL4OGHpd1/v5pRSCIiI+IIHVEe/vkHWLIE+OUXSeKSk7N/v1o1oE0boHVrSVaqVIExNwxcuSIL9wDJ1MqWzfPumgYcOmRN6NauzTmKFxAAdOoEPPqoJHglS9ondCIivSpITmOYhC4mJgYxMTHIzMzEoUOHmNBRoSUmAgsWAAsXSjJy+yhc2bKSfERFAe3aSQLnNIKDpRbdxo0yDFkAmiY7eletkrZmjeSIFp6eQPv2wGOPAV26GGRUk4ioiJwyobPgCB0VxoULwI8/StuwwVrLDZB1b127Ap07A40bS303pxQVJdnYjBnAM88U6aFu3JDn+ddfZfTz+HHr99zdJWnu2xfo1o27Z4nIeXENHVE+pKcDv/0GfPMNsHRp9g0NzZrJaFG3btaDEpxenTqS0O3fX+SH8vCQEc527YBPP5VyLgsWSNu7V/57LF0KeHvLf4OBA+W+TptMExHdAxM6cjq7d8sg03ffyRo5i/BwoF8/SeQqV1YXn8OqU0d6GyR0tzOZgAYNpL37LnDgADBvHjBnDnD4MPD999KCg4GnnpJWrZpNQyAi0j1OuZJTSEsD5s4Fpk+XXZgWFSsCAwZICw1VF58urF8v9UeqVs0+R2onmia7Zr/5RhK6pCTr96KigOefl2lwjtoRkVFxDR0TOvrX338DX3wBfPmlnIUKSFHfrl2BwYNlrRYTgny6dAnw85PrlBTrrtdikJYG/PwzMHMm8Pvv1jWOlStLYjdkyD033hIR6Q4TOiZ0Tm/7dmDSJGD+fOsu1eBgYNgwYNAgKZlBhRAUJNuAN2+W4yAUOH5cRlpnzLBOmXt7y1TsyJFAjRpKwiIisrmC5DQs60mGoWmyZv+hh2Q36ty5ksy1bi2L7Y8dA8aMYTJXJPXqSb97t7IQQkKACRNk9HX2bClyfO0aMG2a1D/u2VMSeiIiZ8KEjnRP06T8RbNmsrbqjz9kGrV/fyA+Xmqe9eghU61URPXrS68wobMoUUJG5eLj5b/5I4/Ia2HhQknoO3SQZX9ERM6ACR3plqbJuqqwMDltYOtW+SM/YoQcKP/dd3K8FNmQAyV0FiYT0LatlKDZswd44glJ6FeskD0cbdsCmzapjpKIyL6Y0JEu/fGHjMh16wb89ZcUn33tNVlf9d//OtkJDsWpQQPpd+3KXn3ZQdStC3z7rRw7NnSo1LtbswZ44AE5ZmzHDtUREhHZBxM60pXt26XA7EMPyYict7esiztxAvjoI66Ps7u6dWX469KlnIezOpBq1WTjxKFDspvZ1RVYtkxqDfbtK+spiYiMhAkd6cLffwNPPilro1avlpGXESPkD/OHHwLlyqmO0El4eQG1a8v1zp1KQ8mPKlWAr76SYsX9+8v07Ny58iuMHp29sDQRkZ4xoSOHdu0aMHYsULOmTKUBskbq0CGZWuWInAKWhYk6SOgsqleXNZU7dkjtwZs35cixGjVkd+ztx74REekREzpySJbdinXqAO+9B1y/DrRsKScHfPst18gpFRYmvQ4XpN1/P7ByJbB8ucwe//MPEB0NNGrEHbFEpG9M6MjhHD4sJSd69gROnZLkbf58YN06mXIlxRo1kl6HCZ1F+/YywBgTIydM7N4tO2IHDgTOn1cdHRFRwTGhI4dx4wbwwQdSGWPlSlkn9/bbwL59wGOPyfoncgCWEboTJ3S9CM3NTY4NO3QIeO45eX19842sr5sxA8jKUh0hEVH+MaEjh7B1q4y+vfUWkJ4uBYL37pXpVm9v1dFRNqVLA/fdJ9cGOJKhXDk573fzZpmSTUqSs2HbtAGOHFEdHRFR/hgmoYuJiUFoaCgiIiJUh0IFcP068MorQGSkTHv5+QFz5sgap+rVVUdHd2WZ+962TW0cNtSkiazRnDwZKFlS1tQ1aCBfW84DJiJyVIZJ6KKjo7Fv3z7ExcWpDoXyKS5OlmNNmiTTWwMGAPv3A/36cXrV4VkSOoP9/+bmBowaJR8u2rWTDxwvvQQ8+KCs7SQiclSGSehIPzIygHHjZFTuwAEgMFDOYv3mGxmhIx1o0kT6rVvVxmEnISHAqlXAl18CPj5ydNj990tNOwc8IIOIiAkdFa9jx6T8yLvvyjRW376yVq5zZ9WRUYGEh8vxC2fOSDMgk0nW0u3eDbRuLTURn31Wjpu7eFF1dERE2TGho2Lz/fcyyrF5M2A2S8X+77+XshGkMyVLAvXqyfXmzWpjsbMqVeTs4EmTZOf1L7/I2ro1a1RHRkRkxYSO7O76deCZZ+TopdRUOSj9r7+A3r1VR0ZFEhkpfWys2jiKgYuLrKXbulWKXSckyHnClpFmIiLVmNCRXR05AjRrBsyaJVNY77wDrF3Lkx4MwZLQbdqkNo5i1LChbOwdNEg28owbJ0WKWYyYiFRjQkd2s2iRLLXatQvw9wd+/11GNNzcVEdGNtG8ufTbtwNpaWpjKUbe3sDMmbKJx9tbpmMbNQK2bFEdGRE5MyZ0ZHNZWVIguEcPICUFaNECiI8H2rZVHRnZ1H33SaZ+44ah6tHl14ABUrWldm3ZF/Lgg3LCBBGRCkzoyKZSUoDu3eUIL0Bqeq1eDVSooDYusgOTSbJ1APjzT7WxKBIaKuvquneXvHbIECA6Wq6JiIoTEzqymWPHZBbul18AT0+Zkpo8GXB3Vx0Z2c2DD0q/fr3aOBTy8QF++gl4/33JcadNk3V1Oj7mloh0iAkd2URsLNC0qdSUCwqSv+8DBqiOiuzOktD9+adUjHZSLi6yzODnn4FSpWTjT2Qkz4IlouLDhI6K7Kef5CDzixdlE8S2bdaDBMjgGjQASpeWejTx8aqjUa5LF9n0W7kycOiQ7PB20tloIipmTOioSD79FOjVC0hPlz9m69ZxvZxTcXW1jtKx0i4AoH592fEaEQFcuiRnwi5YoDoqIjI6JnRUKJoGvPIKMHq0fB0dLWVKSpZUGxcp0KaN9H/8oTYOBxIYKNOuls0SvXoB06erjoqIjIwJHRVYRoac/DBpknw9YQLw+ecyWENO6KGHpN+wQYZqCYDUqJs/X85/1TRg2DDgvffkmojI1pjQUYGkpwOPPw7Mni0J3P/+B7z6quzuIydVt64MSV2/7lSnRuSHq6uMzL3zjnw9diwwcqTUaiQisiUmdJRvV6/KOrlFi+SQ8gULgIEDVUdFyplMwMMPy/XKlWpjcUAmk5yQ8vnn8vVnnwHPPcekjohsyzAJXUxMDEJDQxEREaE6FEO6ehV45BFg1SpZJ7dsGdC1q+qoyGFERUm/YoXaOBzY8OEyou3iAnz1FfD000BmpuqoiMgoTJpmrBUdKSkpMJvNSE5Ohq+vr+pwDOHKFUnm1q8HfH2B5cut57ITAQDOnZNpVwBISLBeUw5z5wJPPCHJXN++UoCb5xsTUW4KktMYZoSO7MMyMmdJ5lauZDJHuQgIABo3lutly9TG4uD69AHmzZMk7ocfZNkCR+qIqKiY0NFdXb8ua+ZuT+aaNlUdFTmsTp2kX7JEbRw60LOnFOR2cwO+/x4YOpRr6oioaJjQUa5u3pTaWWvWyFmVTObonjp3ln7FCpYvyYeuXSWZc3EBZs4EXnyRJU2IqPCY0FEOmZnAk0/KQIuXF/Dbb0zmKB/Cw+Ug3ytXpKou3VOvXrJRwmQCpk4F3nxTdUREpFdM6CgbTZPdeHPnynTQwoXWk52I8uTiInP0ALB4sdJQ9GTAAOCLL+R6/Hg5To+IqKCY0FE2774rhVBNJuC774COHVVHRLrSvbv0ixdzUVgBDB0qyRwgx+n98IPaeIhIf5jQ0S2zZ0tCBwDTpgG9e6uNh3SoTRvZQZOYyFMjCui112QdHSA7X1evVhsPEekLEzoCIAWDn31Wrt98UyrZExWYpyfw6KNyPX++2lh0xmQCJk+Wo/Vu3gS6dQP++kt1VESkF0zoCHv2SBmFjAwpePr++6ojIl3r1Uv6n37itGsBubgAX38NtGoFpKbKxuGEBNVREZEeMKFzcufOSeHg1FSgdWtgxgwZKSAqtPbtAbMZOHsW+PNP1dHojpeXLEGsVQv4+29ZlpiWpjoqInJ0TOicWHo60KMHcOoUULMmsGCBzJgRFYmnp7ywAGDOHLWx6FTp0sCvvwJlygBbtgCDB7NGHRHljQmdk9I04IUXZN262Sx/PMqWVR0VGUb//tL/+COLDBdSjRoya+3qKnnxxImqIyIiR2b3hG7atGkICQmBl5cXwsPDsWHDhrved+3atTCZTDnagQMH7B2m05k+HfjqK5lenTtXRuiIbKZ1a6BiReDyZalMTYXSti3w2Wdy/frrPCaXiO7OrgndvHnzMHLkSLz55puIj49Hy5Yt0bFjR5w6dSrPnzt48CASEhJutRo1atgzTKezaRMwYoRcjx8PdOigNh4yIFdX2WEDyFEIVGjDhskOdE2Tgc+TJ1VHRESOyKRp9luZ0bRpUzRq1AhfWMqgA6hTpw66deuG8ZYqmrdZu3Yt2rRpg6SkJJQuXbpQ/2ZKSgrMZjOSk5Ph6+tb2NAN6/x5ICxM1qv36gXMm8dNEGQnBw4AderI1s3Tp4EKFVRHpFvp6UDLlkBcHNC4sew14XpXIuMrSE5jtxG6GzduYPv27YiKisp2e1RUFDbdo+BoWFgYgoKC0K5dO6xZsybP+6anpyMlJSVbo9xlZckxQ2fPArVrA7NmMZkjO6pdG3jgAXnhff216mh0zdNTyvqVLQts2yanSRAR3c5uCd3FixeRmZmJgICAbLcHBAQgMTEx158JCgrCl19+iQULFmDhwoWoVasW2rVrh/Xr19/13xk/fjzMZvOtFhwcbNPfw0gmTABWrgRKlJA/DqVKqY6IDG/IEOm//JI16YqoShU5jg+Qk1zmzVMbDxE5FrtNuZ49exYVK1bEpk2bEBkZeev2Dz74AN9++22+Nzp06dIFJpMJv/zyS67fT09PR/ptu+hSUlIQHBzMKdc7bNwoxUozM4GZM4FBg1RHRE7h+nWZar18GVi6lIcD28CbbwIffigfyHbuBO67T3VERGQvDjHl6ufnB1dX1xyjcefPn88xapeXZs2a4fDhw3f9vqenJ3x9fbM1yi4pCejbV5K5/v2Bp59WHRE5jRIlgKeekuuYGKWhGMW778p6uitXZAlFRobqiIjIEdgtofPw8EB4eDhWrVqV7fZVq1ahefPm+X6c+Ph4BAUF2To8p6Fpskvu9GmgenXgiy+4bo6K2fPPS790KXDkiNpYDMDNTaZezWYgNhb44APVERGRI7Br2ZLRo0djxowZmDVrFvbv349Ro0bh1KlTeO7fk9/HjBmDJ5988tb9p0yZgsWLF+Pw4cPYu3cvxowZgwULFmD48OH2DNPQ5s6VtTaW4qQ+PqojIqdTo4ZMtWoa8N//qo7GECpXlnV0gJy9vGWL2niISD03ez547969cenSJbz33ntISEhAvXr1sHTpUlSpUgUAkJCQkK0m3Y0bN/Dyyy/jzJkzKFGiBOrWrYslS5agU6dO9gzTsM6eBaKj5frtt4EmTdTGQ05s9GipijtrlswZ8liSIuvXT2o2//CDTL3GxwMlS6qOiohUsWsdOhVYh05oGtC5s8xyhYfL1Iy7u+qoyGlpGtCokazi/89/ZGU/FVlSElC/PnDmjHx4mzpVdUREZEsOsSmC1Prf/ySZ8/QEvvmGyRwpZjIBL78s11OmAFevKg3HKMqUsR7EERMD5HGyIhEZHBM6Azp7Fhg1Sq7few8IDVUbDxEAoHdvoFo14OJFOUiYbOKhh4BnnpHrwYOBtDS18RCRGkzoDOjFF4HkZCAighXlyYG4uckJ8wDw8cdSo45sYuJEIDAQOHRIZrSJyPkwoTOYJUuAn36SXa1ffSV/Q4kcxsCBskUzIQH4v/9THY1hlCljXT83YQKwZ4/aeIio+DGhM5Br16y7WkeNAho2VBsPUQ4eHsBbb8n1+PFAaqraeAykRw+ga1cpNDxkCE9aI3I2TOgM5D//AU6elAGQceNUR0N0F089JVWuz58HPvlEdTSGYTLJKF2pUsDmzcDs2aojIqLixITOIPbvByZNkuvPPmM9KnJg7u5yGCkgL9o7jgekwqtUSTZCAcCYMXKELhE5ByZ0BqBpshHi5k2pPffoo6ojIrqHxx6TStdXr0rVa7KZ4cNlZ/uFC9bkjoiMjwmdASxdCqxaJcuTpkzhWa2kAyYT8Omncj1zJrBjh9p4DMTdXd4HAODzz4EDB5SGQ0TFhAmdzmVkWOu1jhgB3Hef2niI8q15czm/StOAF17gKn4bevhhoEsXeX9g6SIi58CETudmzJBP4OXK8TQl0qEJE2TB56ZN1iMPyCY++URG65YtA1auVB0NEdkbEzodS00Fxo6V67FjgdKllYZDVHCVKlm3ZL/yiux8JZuoUUPW0wHASy8BmZlq4yEi+zJMQhcTE4PQ0FBERESoDqXYfPKJ/P2rXh0YOlR1NESF9OKLUjTxn39k6pVs5u23pejwnj3ADz+ojoaI7MmkaZqmOghbSklJgdlsRnJyMnx9fVWHYzfnzsl6uatXgfnzZdMgkW7t2CG7XjMz5aiTnj1VR2QY48cDb7whx+geOCDTsESkDwXJaQwzQudsPvpIkrmICP7tIwNo1Mh6zuuwYfKJhWxixAjA3x84dozLFImMjAmdDiUkANOny/V//sMyJWQQb78N1K8vBdQGD5bdr1RkJUvKCB0g7xfp6WrjISL7YEKnQxMnAmlpQLNmUp6AyBA8PYE5c6Sg4m+/SRE1solnnwUqVABOnZKyf0RkPEzodOb8eevo3NixHJ0jg6lf33qG3csvA1u2qI3HIEqUsI7SjR/PUToiI2JCpzOffgpcvw40bgy0b686GiI7GD5cFobevAk8/jhw6ZLqiAzhmWdklO7vv7mWjsiImNDpyOXLQEyMXL/1FkfnyKBMJpkXrF5d5gj79JEjD6hIvLyAV1+V64kTWZeOyGiY0OnItGlSTLhePTnWh8iwzGZg4UJZ0f/771J0mIps8GCgbFng6FHg559VR0NEtsSETifS0qwHbr/+OuDC/3JkdPXrA19/LddTpsgnGiqSkiWB55+X64kT1cZCRLbFtEAnfvhBqjkEB8uyIiKn0LOn1NoA5BSJxYuVhmMEw4fLRuLNm6URkTEwodMBTQP++1+5jo5mpXdyMm+8AQwZAmRlAX37Ahs3qo5I1wICgH795PrTT9XGQkS2w4ROB/78E/jrLyk9MGSI6miIipnJJNOtnTvL2oNHHpGjwqjQRo6UfsEC2fVKRPrHhE4HLDtb+/WTBc1ETsfNDZg3D2jRAkhOlorau3apjkq3GjYEWrWSna6WupZEpG9M6BxcYqJ8igZkupXIaXl7A0uWAE2aAP/8A7RrB8THq45Kt154Qfr/+z8WGiYyAiZ0Dm7WLCnB1awZEBamOhoixXx9gRUrpLL2xYtA27Y8TaKQunYFKlWSp3HhQtXREFFRMaFzYJmZwJdfyvVzz6mNhchhlC4ttekeeECqbbdrB6xapToq3XFzAwYNkmue70qkf0zoHNjvvwMnT8rfL5YqIbqN2SwjdQ89BFy9CnTqJMPZVCCDBsmekz/+kPcaItIvwyR0MTExCA0NRUREhOpQbGb2bOmfeEJ2uBLRbUqWBH77DejfX9YlPPMM8PbbUueH8qVKFZm1Bqw1nIlIn0yaZqx3v5SUFJjNZiQnJ8PX11d1OIWWnCz1otLTge3bgUaNVEdE5KA0DXjnHWsB4p495dOQj4/auHTiu++AAQOAatWAI0d4RjSRIylITmOYETqjWbBAkrk6dbgZgihPJhPw/vuyEMzdXf7nadoUOHBAdWS60L07UKoUcOwYEBurOhoiKiwmdA7q+++l79+fn5iJ8mXQIGD9eqBCBWD/filvMn++6qgcXsmSQI8ecv3tt2pjIaLCY0LngM6dA9askWvLET1ElA/NmskahQcfBFJTZTfRkCHAlSuqI3No/ftLP38+cPOm2liIqHCY0Dmgn36SYyubNAFCQlRHQ6QzgYGyRXzMGBnenjFD1i2wXt1dtW0L+PsDly7JU0dE+sOEzgFZZol691YbB5FuubsDH34IrF4t1XOPHAGaN5ck7/p11dE5HDc3oFcvuZ47V20sRFQ4TOgczLlzsgwIAB57TG0sRLrXurWc+dqvnwx7f/QR0KCBdU0D3WL5APnLL5x2JdIjJnQOZvFiqcIQEQFUrqw6GiIDKFMGmDMHWLRINkwcOSJzjAMHyicoAiADmOXLy+Eb69apjoaICooJnYNZtEh6y64zIrKRbt2Affus5+h98w1QowYwcSJPpwfg6gp06SLXv/2mNhYiKjgmdA4kJUWW/ADyt4eIbMxsBr74Ati8GWjcWHbCvvoqULeunFBvrDrrBWZJ6H791emfCiLdYULnQFatkrUrNWoAtWurjobIwJo2lV2v//sfEBQEHD0qJ0w0aSJnxDppNvPQQ4CHhxQZPnhQdTREVBBM6BzIihXSd+qkNg4ip+DiIuvoDh0C3npLKuxu2wZ06AC0auWUC8lKlZJfHQCWLVMbCxEVDBM6B6Fp1oSuQwe1sRA5lVKl5OiwY8eA0aMBT09gwwbZIduihSwoc6IRO8v7DxM6In1hQucgjhwBTp2S6Y4HH1QdDZET8vcHPvlEpl+HDZP/GTdulIVlDRvKJoobN1RHaXeWhG7DBiAtTW0sRJR/TOgcxB9/SN+8OeDtrTYWIqdWsSIwbRpw4gTwyisygrd7t0zPVqkCvPcekJioOkq7qVNHqrukpUk+S0T6wITOQVh2t7ZrpzYOIvpXUBDw8ccydP7hh5LlJCYCY8dKkcjHH5dPYllZqiO1KZNJNkcA1g+aROT4mNA5AE0D1q6V69atVUZCRDmUKSNHhh0/LgWKmzWT7ejz50vmU6uWnEBx5ozqSG2mTRvpeaAGkX6YNM0Yq31jYmIQExODzMxMHDp0CMnJyfD19VUdVr7s3w+EhgJeXlKl3dNTdURElKe//gK+/BL47jspIAlYh7aefFIKSZYqpTTEojh5EqhaVYoNJyUBPj6qIyJyTikpKTCbzfnKaQyT0FkU5Jd3FF99BTz7rIzO8RMxkY5cvQrMmwfMng38+af19hIlgM6d5YDUTp3ka52pWlUSu5UrgYcfVh0NkXMqSE7DKVcHYPk70KKF2jiIqIBKlgQGDZItoUePAu++K5XBr1+XKdnHHpPds717A3PnWkfzdMDyfrRhg9o4iCh/mNA5gNhY6Zs3VxsHERVBtWrAO+/IEQs7dsiRYpUrA1euAD/+CPTtC5QvL3VBYmJk+MuBPfCA9Fu2qI2DiPKHU66KXboE+PlZr8uWVRsPEdmQpgFbtwKLFkk7dCj79+vVAzp2BNq3lwzKy0tNnLnYvl2Ouy1TRt6bTCbVERE5H66h01FCt2yZLLGpWZNnJxIZmqYBBw7IyRO//ipF3m4veVKihJy71bat1C+6/345nkyRGzdkM8SNG8Dhw0D16spCIXJaBclp3IopJrqLbdukj4hQGwcR2ZnJJFV769SRgsX//CPn/S1fLjsPEhPlevlyuX/ZsnJsTKtW0jdsKNtOi4mHB9CggbxHxcczoSNydEzoFNu+XfrGjdXGQUTFrGxZWVfXt6+M3u3eLZV8V68G1q2ThG/xYmkA4OsLREbKYtsHHgCaNLF7PZFGjSSh27ED6NXLrv8UERUREzrFdu6UPixMaRhEpJLJJMNhDRoAo0ZJ4eLt2yWxW7dOtsKnpMiI3ooV8jMuLkDdukDTptIiIuRrN9u9rd9/v/R//WWzhyQiO+EaOoWSk4HSpeX6n39k8TERUQ4ZGTKCt2mTrL3buFGOJLuTl5d8OgwPl75RI6la7uFRqH9240YpX1KxIvD330X8HYiowLgpQicJ3aZNMnPCN0siKrCEBKkpYmnbt+de587dXUbuGjaUEcCGDYH69aU+3j2kpABms1zzQydR8eOmCJ3Yv1/60FC1cRCRDgUFyRFj3brJ11lZwJEjQFycJHfx8dKSk2Vth2V9h4W/v5RNqVdP3oTq1pUNG+XK3bqLry9QqZJ84Ny/n7UyiRwZEzqFLAldnTpq4yAiA3BxkfpHNWsC/fvLbZoGHD8O7NolC+Es/bFjwPnzsgFj9ersj+PnB9SuLa1WLTztVwvz/q6J/buqoXlz9+L/vYgoXzjlqtCjj0o5qpgY4PnnVUdDRE7j6lX5RLlnj7R9+4C9e3Nfl/evTJMrXO8LkfollnbffdKqVtXlebVEjo5Trjpx5Ij0NWqojYOInEzJklIr6c56SVevymkWBw5I278fF2IPw/vvQyipXZM3Lcsb150qVgRCQqRVrSp9lSpyXalSoTdmEFH+cIROkawswNsbSE+X2Y+QENURERHltGIF0KGDhjY1z2L1l0esSd3hw/LmdfRo7psxbufiImv+KleWJC84OGfz81N6MgaRI+IuVx0kdGfOyIdWV1cgLc2mpaOIiGzm8GFZluftDVy5ksuZrpomh70ePSrr9Szt5EngxAnp09Pv/Q+5uwMVKsgbY8WKcl2xorSgIPk6KMjuxZSJHAmnXHXg+HHpK1dmMkdEjqtKFUnirl2TfRQBAXfcwWSS0TU/PylwfKesLPnBU6eyt9Onre3cOSmmfPKktLyULCmJXWCg9AEBch0YKNf+/tae6/rIiRgmlYiJiUFMTAwyMzNVh5Ivp09LX7my2jiIiPLi4SGDY2fOSB6WI6G7FxcXa8LVpEnu97l5U+rq/f23tLNn5R+09AkJcn3liqzzy2st3+18fCSx8/cHypfP2fz8rL2fnySLOYYgifTBMAlddHQ0oqOjbw1POjpLQhccrDYOIqJ7CQ6WvOr0aTlhzObc3eXT7b0+4aamAomJ1paQIKN7iYnZ+/PngRs35P6pqTIdnB+enpLYlSuXs5Ute/fm6Vn054CoiAyT0OmN5WSIihXVxkFEdC+VKkmv/EQbHx9p9yoNoGlSUPn8eWkXLlj729vFi9IuXJB1funpkrmeOVOwuLy85BiN21vp0tb+9muzWdrt1+6s70dFx4ROkYQE6StUUBsHEdG9WN6nLO9bDs9ksiZSNWve+/6aJlO5lgTv0qWcLSlJzj+7/TopSdYIpqXJk1PYJ6hECWty5+ubs7dc+/jIdW69j4+MFHLK2GkxoVMkMVH6wEC1cRAR3UtQkPRnz6qNw25MJqBUKWlVq+b/57KypGRLUpK1Xb6cs7e0pCQZOUxOlq+vXpXHuX5dmuUPQ2G5uUliV6qUNcmzXFt+v9xayZLW/s5rb2+Wk9EJJnSKXLggfT7OxyYiUsryPmV536J/ubhYRwILU0w0I0MSQkuSd/t1crKs/7PclpKS/WvL+sDUVGtimJFhTSxtqUQJa4J3e/P2ztnfrZUokb2/8zZXV9vG7ISY0ClieWMsX15tHERE92J5n2JCZ2NubtaNFUWRmSlJnSXBu3IlZ8J3++1Xr+a8vr23NAvLCOLFi0WLMy/u7pLY3a15eeW8zqvPT/P0lH/XINPUTOgUyMqyfoAqV05tLERE92J5n7p0SW0cdBeurta1draSlSVJ3O0J3rVrOb+23Hb79dWr8rOW265dy/615Totzfrv3bwp7V6njtiaySSJnSXBs/R3Xt/5tYdH7t+7/XbLdW63+fvbvMwFEzoFUlNlDS4gI/VERI6sTBnpbT2TRw7MxcU6tWovlg0llhHAO5sl6bv9trS07Lfd/vWd30tPz36bZSfz7SeXaJr1PsXp6aeBWbNs+pBM6BS4fFl6S1JPROTILAldcrL8DeYaebIJFxfrerrilJUldQotiVxamjXRu/P69q/vbGlp8ji335bb15bbbv+eHabnmNApkJoqvQMfNUtEdIvl+FRNk0GTUqXUxkNUJC4u1nV0BsLPWQpYEjq+KRKRHtxeucLy/kVEjoUJnQLXr0tf3KPMRESFYTJZz7m3vH8RkWNhQqeAZe2l5Q2SiMjRMaEjcmx2T+imTZuGkJAQeHl5ITw8HBs2bMjz/uvWrUN4eDi8vLxQrVo1TJ8+3d4hFjvLBhsPD7VxEBHll+X8+eLeDEhE+WPXhG7evHkYOXIk3nzzTcTHx6Nly5bo2LEjTp06lev9jx8/jk6dOqFly5aIj4/HG2+8gREjRmDBggX2DLPY3bwpPc9jJiK9cPt3C11mpto4iCh3dk3oJk+ejGeeeQaDBw9GnTp1MGXKFAQHB+OLL77I9f7Tp09H5cqVMWXKFNSpUweDBw/GoEGDMGnSJHuGWewyMqTnSSdEpBeWhM7y/kVEjsVuCd2NGzewfft2REVFZbs9KioKmzZtyvVnYmNjc9y/ffv22LZtG25ahrXukJ6ejpSUlGxNL1jLiYj0wvJ+ZSmKTkSOxW4pxcWLF5GZmYmAgIBstwcEBCAxMTHXn0lMTMz1/hkZGbh4lzPkxo8fD7PZfKsF2/goDSIiIiJHZ/cxItMdh95qmpbjtnvdP7fbLcaMGYPk5ORb7fTp00WM2P4sv0pWlto4iIjyy/J+ZZBzzIkMx24nRfj5+cHV1TXHaNz58+dzjMJZBAYG5np/Nzc3lLvLMRmenp7wtGy/0gkuLiYivbGsnXPj+UJEDsluI3QeHh4IDw/HqlWrst2+atUqNG/ePNefiYyMzHH/lStXonHjxnA30JZQyxviXZYFEhE5HMv7FRM6Isdk1ynX0aNHY8aMGZg1axb279+PUaNG4dSpU3juuecAyHTpk08+eev+zz33HE6ePInRo0dj//79mDVrFmbOnImXX37ZnmEWO8vxcZZ6dEREjs7yfmWw4y+JDMOun7V69+6NS5cu4b333kNCQgLq1auHpUuXokqVKgCAhISEbDXpQkJCsHTpUowaNQoxMTGoUKECPvvsM/Ts2dOeYRY7yxsiK64TkV5Y3q94wg2RYzJpmrE2oaekpMBsNiM5ORm+vr6qw8nVli1As2ZA1arA8eOqoyEiyltWlrVuZkICEBioNh4iZ1GQnIaV0BQoVUr61FS1cRAR5ce1a9ZrHx91cRDR3TGhU8DyhpiSwiKdROT4LPXaXVwAb2+1sRBR7pjQKVC6tPQ3b/KgayJyfElJ0pcuzTp0RI6KCZ0CPj7W9SiWN0oiIkdleZ8qU0ZtHER0d0zoFDCZrG+Mly6pjYWI6F4sJy/epb47ETkAJnSKlC8v/YULauMgIroXy/uU5X2LiBwPEzpF/P2lP39ebRxERPdieZ+yvG8RkeNhQqeIpY5TQoLaOIiI7sXyPhUUpDYOIro7JnSKWN4Yz55VGwcR0b1Y3qeY0BE5LiZ0ilSqJP3ff6uNg4joXizvU8HBauMgoruz61muuvDii8CyZUDFikCFCtIqVZKvK1WSFhgIuNn2qbK8MTKhIyJHZzlyu3JltXEQ0d0ZJqGLiYlBTEwMMjMzC/aDR44Ahw9LuxtXV5lrqFRJ3tEqV5aMrHJloEoVaWXKFKjipuWN8eTJgoVLRFSc0tKAc+fkmgkdkeMyaZqxDp8qyEG2ACSjOn5cVv2eOZO9/f23LB7JyLj345QqBVStCoSESKtaFahWTVpIiPUA13+dOycDfyaTvGF6eBTq1yUisqsDB4A6daQgenIyT4ogKk4FyWkMM0JXaJYRtrvJzJQ9+6dPW9upU9JOnpR24QJw5QqwZ4+03AQEANWrA/fdB1SvDv/qNdDcqwZ2p9XAyZO+qFHDPr8eEVFRHD0qfUgIkzkiR8aE7l4s061BQUCTJrnf59o1SfBOnJB2/Li1HTsG/POPDMmdOwds3AgAMAHY+O+PpzcNAOrXAmr922rXlo/EVavKadhERIpYVqPUrKk2DiLKGxM6W/D2liSsdu3cv3/5snzMPXrUumbvyBFcjjuE0unn4Zl0Dlh/Dli/PvvPlSghj1m3rrR69aRVqcKPykRULA4dkp6zCESOjQldcShdGggPl3abCWOAaR8l442eh/Bat4PAwX/bgQPyLnr9OhAfL+12vr6S2DVoADRsCISFAfXrS2JJRGRDBw5IzxE6IsfGhE6hOnWAFJix4p8IvPZERPZvZmbKdO2+fcDevdL27JF315QUYNMmaRYuLvKOa0kcw8OBRo1ybMYgIiqIffukr1tXbRxElDfuclUoLk6W5fn7W8sC3NPNmzJ6t2sX8NdfwM6dMoKX26GwLi5AaKj8I02bAs2aybuyq6stfw0iMqhLlwA/P7lOSZGdrkRUfAqS0zChU+jqVXmD1DRJ6Ip08HViIrBjh7Tt2yVbPHMm5/18fCS5i4wEWrSQnu/SRJSLtWuBNm1kh+uxY6qjIXI+LFuiEyVLShWTI0dkwO2hh4rwYIGBQKdO0iwSEoCtW6Vt2SItNRX4/XdpgIziNWoEtGoFtG4NPPigrNEjIqe3a5f0DRqojYOI7o0JnWL33y8J3Y4dRUzochMUBHTtKg2QdXl798rau40bgT//lDIr27ZJ++QTSfDCw4GHH5bWvDmrHhM5Kct+LCZ0RI6PRc4Ua9xY+m3biuEfc3WVd+bnngO+/Vbq5J06BXz3HTB4sAwXZmXJdO2HH8pcS9myQOfOQEyMJH9E5DR27JD+jg36ROSAuIZOsT/+kJG5KlUcJF86fRpYvRpYtUranZstQkMlwevWTdbisfAxkSFdvy6rLzIy5EAcnuNKVPy4KUJHCV1KipSp0zTZ1xAQoDqi22RlySKaFSuApUtlmjYz0/r9gADg0UeBHj2Adu0Ad3d1sRKRTcXGyoqLgABZjsta5kTFryA5DYdXFPP1lUEvANi8WW0sObi4yCK/114D1q2TM2vnzgX69QPMZtma+9VXQMeOsilj8GAZ1bs96SMiXdq6VfqICCZzRHrAhM4BNG8u/caNed9PuTJlgN69gTlzZCp25Upg2DD5CP/PP8DMmUBUFBAcDLz0kqyoNtYAMJHT+PNP6Zs1UxsHEeUPEzoH0KKF9Bs2qI2jQDw8ZBfstGlS7271amDoUNlEkZAATJ4s5VAaNACmTJEKpUSkC5pmTehatlQbCxHlD9fQOYBjx2SDqbs7cPmyzo9kvXEDWL5cdtH++iuQni63e3jIWrthw+QvBOdwiBzWoUNArVryv+3ly0CJEqojInJOTrmGLiYmBqGhoYiIiLj3nR1MSAhQqZKc6hUbqzqaIvLwkI0S8+fLLo+YGFmHd+OGrL9r1UpG7aZPl6MyiMjhrFkjfWQkkzkivTBMQhcdHY19+/YhLi5OdSgFZjLJIQ2A9Y3UEEqXBp5/XtbSbdsGDBkiw4979shIXXAw8PbbuZ9DS0TKrF4tfZs2auMgovwzTEKnd23bSm95IzWc8HDgyy9lvd3kyUC1akBSEvCf/0gRvuefB44eVR0lkdPLypL6mIAdTq8hIrthQucg2rWTfutWIDlZbSx2Vbo0MGqULNL56SepiZCWBnzxhSzaeeopJnZECu3cKXuYfHyAJk1UR0NE+cWEzkFUrgzUrCkl3Aw17Xo3rq5Az57Ali3A2rVAhw7yy3/9tSR2gwfLsWREVKyWL5e+dWvWCifSEyZ0DqR9e+ktb6hOwWSSjRLLlklyZ0nsZs6UDPeVV2RqloiKxbJl0nfsqDYOIioYJnQOxJLQLV3qpPV4mzSRvyYbN0qSl54OTJoE1Kghu2UzMlRHSGRoSUnWnfZM6Ij0hQmdA2nbVjaBnj4t61icVvPmMu+8ZImci3bpEjB8uGyssFQ7JSKbW75cBsjr1gWqVlUdDREVBBM6B1KihJycBQCLFysNRT2TCejUCfjrLxmdK1MG2LVLihIPGsSTJ4js4Ndfpe/cWW0cRFRwTOgcTPfu0i9cqDYOh+HmJiVNDh2SOnYAMHu2DCHwSSKymRs3ZLkHAHTpojYWIio4JnQOpksXyWH27AEOHlQdjQPx85M6dhs3yjTsuXOyS7Z3b47WEdnAmjVSMsnfH2jWTHU0RFRQTOgcTJky1mKe8+erjcUhNW8O7NgBvPmmlD758Uegfn3g999VR0aka/PmSd+jh/yvRUT6woTOAT3+uPSWN1i6g6ennDCxZQtQuzaQkCCLD994Qw7EJaICSU+3rmDo00dtLERUOEzoHFC3blLQc88eYO9e1dE4sPBwYPt2YOhQqfMyfrwcuZGQoDoyIl1ZtkymWytWlH1HRKQ/TOgcUJkyUl8XAL7/Xm0sDs/bG5g+XaZefXyADRuAsDBg0ybVkRHpxnffSd+nD+DCvwpEusT/dR1U//7Sf/+9HJZN99Crl4zW1a8vGybatAH+9z/VURE5vMuXreVKBgxQGgoRFQETOgfVpYsMOJ04wVq6+VajhozM9ewpNRiefhp4+20nPXaDKH/mzZP/XerVAxo0UB0NERUWEzoH5e0tg04AB5oKpFQpmX598035+j//AZ54Qv5iEVEOlveXp56Set5EpE+GSehiYmIQGhqKiIgI1aHYzKBB0s+bJwuWKZ9cXCSRmzVLivp9/73UYrh+XXVkRA5l/35g82YpU2JZ5kFE+mSYhC46Ohr79u1DXFyc6lBspnlzoE4d4No1YM4c1dHo0NNPy+KgEiXkXNhHHgGuXFEdFZHDmDlT+kceAQID1cZCREVjmITOiEwm4Lnn5PqLL7gUrFA6dJATx318pBR+VBSQkqI6KiLl0tKAr7+W68GD1cZCREXHhM7BDRggA0x79nBzRKE9+CDwxx9SDyY2VoYjrl5VHRWRUvPmARcvAsHBQMeOqqMhoqJiQufgypQB+vWT65gYtbHoWkSEHA9mNktm3K2bDFEQOSFNAz7/XK6ff16WmhKRvjGh04HoaOkXLADOnlUbi641aiQl8UuWlORuwAAgM1N1VETFbtMmKdvo6cnpViKjYEKnA2FhQIsWQEaGrKWjIoiMBH75Rc5W++knYNQoLk4kp/Ppp9IPGAD4+amNhYhsgwmdTowYIf306ay+UWRt2wLffivXn39unXsicgInTgCLFsn1iy8qDYWIbIgJnU507w5UqSKLmFlo2AZ69wYmTpTrUaOAVavUxkNUTKZMkeMEH35YTocgImNgQqcTbm7ASy/J9cSJMv1KRfTSS8DAgfLX7fHHgcOHVUdEZFdJScCMGXL9yitqYyEi22JCpyPPPAOULw8cPw7Mnas6GgMwmWQOu1kzOaG8Rw+WMyFDmzpVXuINGgAPPaQ6GiKyJSZ0OuLtLbODAPDBB9ygaRNeXrJ9OCBAiv1ZthQTGUxKinUzxOuv89xWIqNhQqcz0dFA6dLAgQOSh5ANVKggVVZdXKR0/nffqY6IyOamTpUp11q1ZIUBERkLEzqd8fW17kx77z1Z/kU20KoVMHasXEdHy7w2kUEkJwOTJsn1228Drq5q4yEi22NCp0MvviiJ3d69HKWzqTfeAB54QOamWHSYDOS//5XRuTp1gD59VEdDRPbAhE6HypQBRo6U63fe4Y5Xm3Fzk/p0Pj7Axo3WBUdEOvbPP8Ann8j12LEcnSMyKiZ0OjV6NFCunKylY106GwoJASZPluu33gIOHlQbD1ERffyxDDo3bAj06qU6GiKyFyZ0OmU2S74ByKduVtuwoWeeAdq3B9LTgaFDeTQY6daZM9aDUN5/X/b9EJExGeZ/75iYGISGhiIiIkJ1KMVm2DAZUDp71jqoRDZgqU9XogSwbp31mDAinXnrLeDaNaB5c6BzZ9XREJE9mTTNWMMPKSkpMJvNSE5Ohq+vr+pw7G7uXKBvX6BkSeDIESAwUHVEBjJhghTs8vOTqdeyZVVHRJRvO3YAjRvLAPPmzUDTpqojIqKCKkhOY5gROmfVuzfQpIlMub79tupoDGb0aCA0VA7Qffdd1dEQ5ZumycYpTQP69WMyR+QMmNDpnMlknW6dORPYuVNpOMbi7i71HgAgJkbqxBDpwPz5wIYNcrrMhAmqoyGi4sCEzgAeeEAqv2saMHw4iw3b1EMPAV27Sk26l19WHQ3RPV27Brzyily/9hpQqZLaeIioeDChM4hJk2Qd3caNcnoV2dCkSVKjbvlyYPVq1dEQ5emjj4BTp4AqVayJHREZHxM6gwgOBsaNk+tXXgEuXVIajrFUrw4895xcv/46y5iQwzp40DrFOnmybNQmIufAhM5AXnwRqFdPkrlXX1UdjcG89ZYMgcbFAb/9pjoaohyysoAhQ4AbN4COHYHu3VVHRETFiQmdgbi7A//3f3I9axawfr3aeAwlIAB44QW5fucdLlQkhzNzpnUjxLRpsmGKiJwHEzqDad4cePZZuX72WeD6dbXxGMrLL8s5rzt3cpSOHMrZs9b1cu+/D1StqjQcIlKACZ0BffSRFBg+eFCOBSMbKVcOiI6W6w8+4Fo6cgiaJi/L5GQgIgIYMUJ1RESkAhM6AypTxjr1+sknQGys2ngMZdQoWWm+dSvwxx+qoyHCjz8CixfLRuwZM6QnIufDhM6gHn0UGDBAlnoNHCgnSZAN+PsDgwfL9cSJamMhp3fmjJzpDABvvAE0aKA2HiJShwmdgX32GVCxInD4sFTbIBsZNQpwcQFWrgR27VIdDTmprCxg0CAgKQkID5eN2ETkvOya0CUlJWHAgAEwm80wm80YMGAALl++nOfPPPXUUzCZTNlas2bN7BmmYZUuLbtdAWDqVGDFCqXhGEdICNCjh1x/9pnaWMhpTZ0qnym8vIDvvpNd7kTkvOya0PXr1w87d+7E8uXLsXz5cuzcuRMDBgy458916NABCQkJt9rSpUvtGaahRUVZ1/E/9RRw/rzScIzjxRelnzOHVZyp2O3ZY601+cknQO3aauMhIvXsltDt378fy5cvx4wZMxAZGYnIyEh89dVX+O2333Dw4ME8f9bT0xOBgYG3WtmyZe0VplOYOBGoWxdITASefJIl1GzigQeAsDAgLc06DEpUDK5fB/r1A9LTgUcesa6hIyLnZreELjY2FmazGU2bNr11W7NmzWA2m7Fp06Y8f3bt2rXw9/dHzZo1MWTIEJzPY1gpPT0dKSkp2RplV6IEMHeu9CtWAB9/rDoiAzCZgOHD5fr//o9ZMhWbESOA3btlf87MmSwgTETCbgldYmIi/P39c9zu7++PxMTEu/5cx44dMWfOHKxevRqffPIJ4uLi0LZtW6Snp+d6//Hjx99ao2c2mxEcHGyz38FI6tUDPv9crt96C/jzT7XxGELv3oDZDBw9Cvz+u+poyAl8+62UJjGZZLY/IEB1RETkKAqc0I0bNy7HpoU727Zt2wAAplw+OmqaluvtFr1798YjjzyCevXqoUuXLli2bBkOHTqEJUuW5Hr/MWPGIDk5+VY7ffp0QX8lpzFokEzVZGYCffoAFy6ojkjnSpaU2jCA/JUlsqPdu4GhQ+V67FjgoYfUxkNEjqXAJSiHDx+OPn365HmfqlWrYteuXTh37lyO7124cAEBBfhYGRQUhCpVquDw4cO5ft/T0xOenp75fjxnZjIB06cD27fLKRK9e8suORYiLYJnnpHthosXAxcvAn5+qiMiA0pJAXr2lPVzUVEsUUJEORX4T7mfnx/88vFHKzIyEsnJydi6dSuaNGkCANiyZQuSk5PRvHnzfP97ly5dwunTpxEUFFTQUCkXPj7AwoVAkybAmjVy/uOnn6qOSsfuvx9o1AjYsQP44QfghRdUR0QGYykOfvgwUKmSTLW6uqqOiogcjd3W0NWpUwcdOnTAkCFDsHnzZmzevBlDhgxB586dUatWrVv3q127NhYtWgQAuHLlCl5++WXExsbixIkTWLt2Lbp06QI/Pz90797dXqE6ndBQ4Jtv5HrKFOs1FdLAgdJ/+63aOMiQxo2TAWAPD+CnnzgITES5s2sdujlz5qB+/fqIiopCVFQUGjRogG/v+KN38OBBJCcnAwBcXV2xe/dudO3aFTVr1sTAgQNRs2ZNxMbGwsfHx56hOp0ePYC335brZ5+Vo0mpkPr0kXnruDjgwAHV0ZCB/Pgj8P77cv3ll8BtRQOIiLIxaZqmqQ7CllJSUmA2m5GcnAxfX1/V4Ti0rCyge3fgl1+AoCBgyxaAm4QLqXNnYMkS4J13gHffVR0NGUBcHPDgg1LqcPRoKSBMRM6lIDkNz3J1Yi4ucmRQvXpAQoIUKWUZv0Lq21f6H34AjPUZiRT4+2+ga1dJ5jp1Yu1IIro3JnROzsdHBpYCA6UsQq9ewM2bqqPSoa5dpXLz4cNAfLzqaEjHLl8GOnaUD1mhofIZgZsgiOhemNARKlcGfvsN8PaWMiZDh3KQqcBKlZKhFEBWrhMVQnq6LIPYs0c+ZC1ZAnDlCBHlBxM6AgCEh8sCbBcXYPZsKVxKBdSrl/Tz5zMjpgLLypKzlteulZHzZcuAqlVVR0VEesGEjm555BFg2jS5fv99KWlCBfDII4CnJ3DkCLB3r+poSEc0DRg5Uj5UubtLrcj771cdFRHpCRM6ymboUGuZhFGjZLSO8qlUKeDhh+X639qKRPkxdqz1rOVvvuGxXkRUcEzoKIc335RkDgAGD+aSsALp1k36n39WGgbpx4QJ1g9Rn38uZQ2JiAqKCR3lYDJJzatnnpF1Pf36yaYJyofOneUJ3L4dOHtWdTTk4D7/HHj9dbn+6CNg+HC18RCRfjGho1yZTMD//Z+MFty8KQeDM6nLh4AAOSgXkC2KRHcxfTowYoRcv/MO8NprauMhIn1jQkd35eoqx5P26gXcuCHHhTGpy4dHHpF+2TK1cZDD+vxzYNgwuX75ZTmvlYioKJjQUZ7c3IA5c6wFh3v0kKPCKA+WenSrVkkmTHSbyZOtI3OvvCKnQJhMamMiIv1jQkf35O4OfP898Pjj1unX779XHZUDCwsD/P2BK1eA2FjV0ZAD+eAD4KWX5HrMGNkQwWSOiGzBMAldTEwMQkNDERERoToUQ7KM1A0YAGRkAE88Ya1ZR3dwcbGWL1m5Um0s5BA0DXj1VeCtt+Tr996T5I7JHBHZimESuujoaOzbtw9xcXGqQzEsNzfgf/+TnXiaBkRHA//5Dw9FyFVUlPRM6JxeRobsGJ84Ub6eOBF4+20mc0RkW4ZJ6Kh4uLgAn30mf5AA6UeMADIz1cblcCyVYbdvB5KS1MZCyly7JutOZ8+W/3dmzpRNEEREtsaEjgrMZJIpo//+V66nTgUee0z+eNG/KlQAateW4cs1a1RHQwpcuCAz77/+Cnh5yeEhgwapjoqIjIoJHRXaiBHA3LmAhweweDHQpg1w/rzqqBxI27bSr12rNAwqfgcOAM2aAZs2AaVLy4bnRx9VHRURGRkTOiqSxx8H/vgDKFsW2LpV/ojxXPp/tWkjPUfonMrq1UBkJHDsGBASIhudW7RQHRURGR0TOiqyFi3kj9Z99wHHj0tSx1p1AFq3ln7PHuDiRaWhUPGYPh1o3x64fBlo3hzYskVm3omI7I0JHdlEzZrA5s2Sw1y5ImfUf/CBk++A9fMDQkPl+s8/1cZCdpWeDgwdKqc/ZGQAffvKyHX58qojIyJnwYSObMbPT6p0PP+8JHJvvSVTsqmpqiNT6MEHpV+/Xm0cZDdnz8rs+pdfyiahjz6Smo1eXqojIyJnwoSObMrdHYiJkaknd3fgp5+AiAgnXlfXsqX0GzeqjYPsYt06IDxclhyULg0sWQK89hprzBFR8WNCR3YxdKj8satUCTh4EGjSBPjuO9VRKfDAA9Lv2MG6LgaSlQV8+KFsZE5MBOrVA+LigI4dVUdGRM6KCR3ZTWSk5DEPPyy5zIABUofryhXVkRWjypWBihVlYdXWraqjIRs4dw7o0AF4801J7AYOlPWj1aurjoyInBkTOrKr8uWBZcuAceNkGmr2bJmi2rFDdWTFxGSSzBaQeTnStRUrgIYNpa5ciRLArFlyHF7JkqojIyJnx4SO7M7VFRg7VsqxVaoEHDokpU0mTnSSI8OY0One9etSSLtDBxmhq1tXplifflp1ZEREggkdFZtWrYC//gK6dwdu3gRefVV2Bx49qjoyO2vaVPqtW528jos+bd8uo8qffy5fR0dLMle3rtq4iIhux4SOilXZssCCBcCMGUCpUsCGDTKFNW2arEcypEaNADc3Gdo5dUp1NJRP6elSeqdpU2D/fiAwUJYPTJ0q061ERI6ECR0VO5MJeOYZYPduGbW7elVGPdq1Aw4fVh2dHZQoAdSvL9dxcWpjoXyJi5NRuQ8+kGUBvXrJ67VDB9WRERHljgkdKVO1qpx7+dlngLe3nGHfoAEwfrxMyRpKRIT027apjYPylJoKjBplPZPY3x+YPx/48UcpnE1E5KgMk9DFxMQgNDQUEZY/nKQLLi7ACy/IcadRUUBaGvDGGzJLaajTsiyvS47QOSRNAxYuBOrUAaZMken//v0lqXvsMdXRERHdm0nTjLVKOyUlBWazGcnJyfD19VUdDhWApgHffguMHg1cuiS3Pfkk8PHHQECA2tiKLD5estQyZeSX41ECDuPwYWDkSGDpUvm6WjVZ09m+vdKwiIgKlNMYZoSO9M9kkgTuwAFgyBD5+ptvgJo1gU8/BW7cUB1hEdStC3h4AElJwPHjqqMhyPTq66/LKQ9Ll8pRdW+9JaPFTOaISG+Y0JHD8fOTg843bwYaNwZSUmTUrm5dYPFinVb+8PCQzAFwoqrKjikjA/jqK/mgMGGCfFDo0EESufff5w5WItInJnTksJo0kaTuq69kyvXIEalh16aNTk/RatRI+p07lYbhrDQNWLIEuP9+4Nln5QzW6tWBX3+VEbqaNVVHSERUeEzoyKG5ugKDB8s6p7feAry8gHXrpDZY9+4yqqIbYWHSx8erjcMJbdgAtG4NdO4sGx3KlpVp/D175DYuaSQivWNCR7rg4yPTYYcOyWHoLi4y/dqgAfDEE3K7w2vYUPq//lIbhxPZulXWwz34ILB+PeDpCbzyioz2jhwpXxMRGQETOtKV4GA5DH33bqBnT5lGmzNHyk306+fgI3YNGkh/5gxw8aLaWAxu40bgkUdkJHflSjmoY+hQGen9+GPZbExEZCRM6EiXQkOBn36SOr2dO0vdsB9+kAMZuneXtXcOx8cHCAmR69271cZiQJoGrFghp4+0aCHr4lxcZET34EFg+nT5QEBEZERM6EjXwsNlUfuOHVIA1mSSqdjISJlm++UXBzsj1jJKx4TOZtLTZdT2/vtlt+r69VKCZMgQSeT+9z+pLUdEZGRM6MgQwsLkiKY9e4Cnn5Y/6Bs2AF27ArVqSfX/5GTVUcJ6pisTuiJLSADefReoUkX+m+/aBZQsKWvjjh+X0jfVq6uOkoioeDChI0MJDQVmzZI/6K+9BpjNsgB+1CigYkXg+ecV70mw1KLbu1dhEPqlaZKo9+kDVK4MjBsHnDsn/20/+gg4fVp2r1asqDpSIqLixaO/yNCuXgW++w74/PPsOVREhJRD6dMHKNaXyd69ktT5+MiQIetl5EtiohwLN2uWnCRi0bw5EB0N9Oolo7JEREZSkJyGCR05BU0D1qwBvvgC+Pln4OZNub1ECdlE8eSTwEMPSd07u7pxQ+YFMzJkOKlSJTv/g/qVlgb89pskckuWAJmZcru3N9C3ryRyltJ+RERGxISOCR3l4fx5SRJmzgT277feHhQEPP64tGbNZIekXYSGyj+8fDkPDb3DzZvA2rXA3LnAggXZ1z1GRgKDBsl/H/6vTUTOgAkdEzrKB02TsifffCMlTy5dsn6vYkWpc9e9u5TAcHOz4T/82GOSrXz6qazgd3JpacAff0gZmp9/BpKSrN8LDgb69wcGDJA8mIjImRQkp7HlnykiXTGZZC1dRATwyScyYDZ/vpQ6OXMG+OwzaWXLSq27Ll2Adu1sUJS2Th3p9+0r8u+gV+fOSZ24X3+Vwr9Xr1q/V7480KOHTKu2bGnHkVIiIgNhQkcEwMMDePRRaWlpkmQsWiQJx6VLMor3zTeSXDRtKjOl7doBTZrIzxaIJaG7fb7X4K5dA/78E1i1StqdO40rVpTR0McekxFRu69lJCIyGMNMucbExCAmJgaZmZk4dOgQp1zJJjIy5Bipn3+WEbw7czBvb+CBB4A2baSPiJCNFnnasUMqIpcvLwv6DCg1VU7rWLdO2pYt1o0oFuHhMvL56KOyuYEbfomIsuMaOq6hIzs5dUpG71aulMX7Fy5k/767u5xY0LSpJCzh4TIgl20N3pUrUrYEkOG/smWLKXr7SEuTgs7x8cDWrZLI7d0raxRvV7EiEBUFPPywjG76+6uJl4hIL5jQMaGjYpCVJcvgVq+WYrcbN8rpBXcqUQKoW1cOiahfX8rQtXmyEtwSzwCxsbKlVgcyM4GTJyVZs7Rdu+Q5yMjIef8qVeT4tVatpN13H0fhiIgKggkdEzpSQNMk4YmNld2z27bJ7OqVKznv+wfaoi3W4K3gr3GgyZOoWhWoWlWSoAoVpPn7F+9asps3ZQb47FkZibS0o0eBw4eBY8ekjF5uypUDGjWSEclmzWSEMjCw+GInIjIi7nIlUsBkwq3ErG9fuS0rS44e271b2q5dsg7vyMGaaKutgdfpQ1hwOvfHc3GRZXZ+fpIw+fnJUWY+Ptbm6Wlt7u4Sg6VlZEgCdvOmHGB/9aq0K1ekvltSkrR//pFdp7eXbbkbDw+gdm0ZcbSMOoaFSX1kjr4REanDhI7IjlxcgJo1pfXsab09c2IN4FVgUIvD8O0FnDgh7dQpGSE7d06SwXPnpBUXNzcgIEDOSa1cWerAhYQANWpICw7mDlQiIkfEhI5IAddaNQAAFa4exogROb+fmSnTn+fPAxcvyujZxYtASoq01FQZaUtLk9G3tDQZkdM0a3NzkxE1d3fpS5WSU8dKlpSRvjJlZD9GmTKSxAUGytes+0ZEpD9M6IhUqCEJHY4ckezrjvlKV1c5iiwoSEFsRESkO/wsTqRCSIgkcampOWufEBERFRATOiIVvLxkJwEgo3RERERFwISOSJX77pP+2DG1cRARke4xoSNSxZLQHT2qNg4iItI9JnREqnCEjoiIbIQJHZEqISHSM6EjIqIiYkJHpIoloTt+XG0cRESke0zoiFSxJHRnz0p1YCIiokJiQkekSvnygLe3FBY+dUp1NEREpGNM6IhUMZmAqlXl+sQJlZEQEZHOGSahi4mJQWhoKCIiIlSHQpR/TOiIiMgGDJPQRUdHY9++fYiLi1MdClH+Vaki/cmTauMgIiJdM0xCR6RLloSOa+iIiKgImNARqVS5svQcoSMioiJgQkekkiWh4wgdEREVARM6IpUsCd3ffwOZmWpjISIi3WJCR6RShQqAqyuQkQGcO6c6GiIi0ikmdEQquboCQUFyffq02liIiEi3mNARqRYcLD0TOiIiKiQmdESqWRK6v/9WGwcREekWEzoi1SpVkp4jdEREVEhM6IhUsyR0Z86ojYOIiHSLCR2RakzoiIioiJjQEalWsaL0XENHRESFZNeE7oMPPkDz5s3h7e2N0qVL5+tnNE3DuHHjUKFCBZQoUQKtW7fG3r177RkmkVoVKkh/9iygaWpjISIiXbJrQnfjxg306tULw4YNy/fPfPzxx5g8eTKmTp2KuLg4BAYG4uGHH0ZqaqodIyVSyFKH7sYN4NIltbEQEZEu2TWhe/fddzFq1CjUr18/X/fXNA1TpkzBm2++iR49eqBevXr4+uuvce3aNXz//ff2DJVIHU9PwM9Prs+eVRsLERHpkkOtoTt+/DgSExMRFRV16zZPT0+0atUKmzZtyvVn0tPTkZKSkq0R6Y5l2vXCBbVxEBGRLjlUQpeYmAgACAgIyHZ7QEDAre/dafz48TCbzbdasKVIK5Ge/PEHkJ4OtGunOhIiItKhAid048aNg8lkyrNt27atSEGZTKZsX2ualuM2izFjxiA5OflWO83irKRHfn6Ah4fqKIiISKfcCvoDw4cPR58+ffK8T9WqVQsVTGBgIAAZqQuyLBQHcP78+Ryjdhaenp7w9PQs1L9HREREZAQFTuj8/PzgZ1nAbWMhISEIDAzEqlWrEBYWBkB2yq5btw4TJkywy79JREREpHd2XUN36tQp7Ny5E6dOnUJmZiZ27tyJnTt34sqVK7fuU7t2bSxatAiATLWOHDkSH374IRYtWoQ9e/bgqaeegre3N/r162fPUImIiIh0q8AjdAXxzjvv4Ouvv771tWXUbc2aNWjdujUA4ODBg0hOTr51n1dffRXXr1/H888/j6SkJDRt2hQrV66Ej4+PPUMlIiIi0i2TphmrNH1ycjJKly6N06dPw9fXV3U4RERERIWSkpKC4OBgXL58GWazOc/72nWETgXLiRIsX0JERERGkJqaes+EznAjdFlZWTh79ix8fHzuWurEwpL52mI0LyIiAnFxcUV6DFs/liM9jiM+10Z8HFs+z7aKyaiPw9d08T0On+vieRw+z8X3WPl9rjVNQ2pqKipUqAAXl7y3PRhuhM7FxQWVKlUq0M/4+voW+cXr6upqsyleWz2Woz0O4FjPtVEfB7DN8ww43u/maI8D8DVdHI9jwefa/o8D8HkuzsfKz3N9r5E5C4c6KULPoqOjHe6xHO1xbMXRfi9HexxbcrTfzdEex1Yc7fdytMexJUf73RztcWzF0X4vR/wbbWuGm3ItiJSUFJjNZiQnJ3MDhZ3xuS4efJ6LD5/r4sPnunjweS4+9niunXqEztPTE2PHjuVJE8WAz3Xx4PNcfPhcFx8+18WDz3Pxscdz7dQjdERERERG4NQjdERERERGwISOiIiISOeY0BERERHpHBM6IiIiIp1zuoTugw8+QPPmzeHt7Y3SpUvn62c0TcO4ceNQoUIFlChRAq1bt8bevXvtG6gBJCUlYcCAATCbzTCbzRgwYAAuX76c58889dRTMJlM2VqzZs2KJ2CdmDZtGkJCQuDl5YXw8HBs2LAhz/uvW7cO4eHh8PLyQrVq1TB9+vRiilT/CvJcr127Nsdr12Qy4cCBA8UYsf6sX78eXbp0QYUKFWAymbB48eJ7/gxf04VT0Oear+nCGT9+PCIiIuDj4wN/f39069YNBw8evOfPFfV17XQJ3Y0bN9CrVy8MGzYs3z/z8ccfY/LkyZg6dSri4uIQGBiIhx9++Na5sZS7fv36YefOnVi+fDmWL1+OnTt3YsCAAff8uQ4dOiAhIeFWW7p0aTFEqw/z5s3DyJEj8eabbyI+Ph4tW7ZEx44dcerUqVzvf/z4cXTq1AktW7ZEfHw83njjDYwYMQILFiwo5sj1p6DPtcXBgwezvX5r1KhRTBHr09WrV9GwYUNMnTo1X/fna7rwCvpcW/A1XTDr1q1DdHQ0Nm/ejFWrViEjIwNRUVG4evXqXX/GJq9rzUnNnj1bM5vN97xfVlaWFhgYqH300Ue3bktLS9PMZrM2ffp0O0aob/v27dMAaJs3b751W2xsrAZAO3DgwF1/buDAgVrXrl2LIUJ9atKkifbcc89lu6127dra66+/nuv9X331Va127drZbhs6dKjWrFkzu8VoFAV9rtesWaMB0JKSkoohOmMCoC1atCjP+/A1bRv5ea75mraN8+fPawC0devW3fU+tnhdO90IXUEdP34ciYmJiIqKunWbp6cnWrVqhU2bNimMzLHFxsbCbDajadOmt25r1qwZzGbzPZ+3tWvXwt/fHzVr1sSQIUNw/vx5e4erCzdu3MD27duzvRYBICoq6q7PaWxsbI77t2/fHtu2bcPNmzftFqveFea5tggLC0NQUBDatWuHNWvW2DNMp8TXdPHja7pokpOTAQBly5a9631s8bpmQncPiYmJAICAgIBstwcEBNz6HuWUmJgIf3//HLf7+/vn+bx17NgRc+bMwerVq/HJJ58gLi4Obdu2RXp6uj3D1YWLFy8iMzOzQK/FxMTEXO+fkZGBixcv2i1WvSvMcx0UFIQvv/wSCxYswMKFC1GrVi20a9cO69evL46QnQZf08WHr+mi0zQNo0ePRosWLVCvXr273s8Wr2u3IkXqIMaNG4d33303z/vExcWhcePGhf43TCZTtq81TctxmzPI73MN5HzOgHs/b7179751Xa9ePTRu3BhVqlTBkiVL0KNHj0JGbSwFfS3mdv/cbqecCvJc16pVC7Vq1br1dWRkJE6fPo1JkybhwQcftGuczoav6eLB13TRDR8+HLt27cKff/55z/sW9XVtiIRu+PDh6NOnT573qVq1aqEeOzAwEIBkz0FBQbduP3/+fI5s2hnk97netWsXzp07l+N7Fy5cKNDzFhQUhCpVquDw4cMFjtVo/Pz84OrqmmOEKK/XYmBgYK73d3NzQ7ly5ewWq94V5rnOTbNmzfDdd9/ZOjynxte0WnxN598LL7yAX375BevXr0elSpXyvK8tXteGSOj8/Pzg5+dnl8cOCQlBYGAgVq1ahbCwMACyvmbdunWYMGGCXf5NR5bf5zoyMhLJycnYunUrmjRpAgDYsmULkpOT0bx583z/e5cuXcLp06ezJdPOysPDA+Hh4Vi1ahW6d+9+6/ZVq1aha9euuf5MZGQkfv3112y3rVy5Eo0bN4a7u7td49WzwjzXuYmPj+dr18b4mlaLr+l70zQNL7zwAhYtWoS1a9ciJCTknj9jk9d1QXdr6N3Jkye1+Ph47d1339VKlSqlxcfHa/Hx8Vpqauqt+9SqVUtbuHDhra8/+ugjzWw2awsXLtR2796t9e3bVwsKCtJSUlJU/Aq60aFDB61BgwZabGysFhsbq9WvX1/r3Llztvvc/lynpqZqL730krZp0ybt+PHj2po1a7TIyEitYsWKfK7/NXfuXM3d3V2bOXOmtm/fPm3kyJFayZIltRMnTmiapmmvv/66NmDAgFv3P3bsmObt7a2NGjVK27dvnzZz5kzN3d1d++mnn1T9CrpR0Of6008/1RYtWqQdOnRI27Nnj/b6669rALQFCxao+hV0ITU19db7MABt8uTJWnx8vHby5ElN0/iatqWCPtd8TRfOsGHDNLPZrK1du1ZLSEi41a5du3brPvZ4XTtdQjdw4EANQI62Zs2aW/cBoM2ePfvW11lZWdrYsWO1wMBAzdPTU3vwwQe13bt3F3/wOnPp0iWtf//+mo+Pj+bj46P1798/x/b325/ra9euaVFRUVr58uU1d3d3rXLlytrAgQO1U6dOFX/wDiwmJkarUqWK5uHhoTVq1CjbVviBAwdqrVq1ynb/tWvXamFhYZqHh4dWtWpV7YsvvijmiPWrIM/1hAkTtPvuu0/z8vLSypQpo7Vo0UJbsmSJgqj1xVIa4842cOBATdP4mralgj7XfE0XTm7P8Z15hT1e16Z//3EiIiIi0imWLSEiIiLSOSZ0RERERDrHhI6IiIhI55jQEREREekcEzoiIiIinWNCR0RERKRzTOiIiIiIdI4JHREREZHOMaEjIiIi0jkmdEREREQ6x4SOiIiISOeY0BERERHp3P8DM82MddnM8+MAAAAASUVORK5CYII=\n", "text/plain": [ "Graphics object consisting of 2 graphics primitives" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "implicit_plot(F(x,y)[0]-x==0,(x,-1,2),(y,-1,1)) +\\\n", "implicit_plot(F(x,y)[1]-y==0,(x,-1,2),(y,-1,1),color='red')" ] }, { "cell_type": "code", "execution_count": null, "id": "d8f0d78b", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.5", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" } }, "nbformat": 4, "nbformat_minor": 5 }