{ "cells": [ { "cell_type": "markdown", "id": "5b03aa44", "metadata": {}, "source": [ "# Cálculo de autovalores\n", "#### https://meet.noysi.com/metodosnumericos1" ] }, { "cell_type": "markdown", "id": "45aa23c7-93ab-4aa9-9d99-034f3b5b622d", "metadata": {}, "source": [ "## Teorema de Gersgorin" ] }, { "cell_type": "markdown", "id": "8b0f9d74-f584-45e7-bbdc-1caf53f0ff41", "metadata": {}, "source": [ "La siguientes funciones calculan los discos del Teorema de Gersgorin y los representan." ] }, { "cell_type": "code", "execution_count": 1, "id": "a502845e-5ac5-4221-9f93-3f24dc372fb7", "metadata": {}, "outputs": [], "source": [ "def Gershgorin(A):\n", " return zip(A.diagonal(),vector([sum([abs(k) for k in fila]) for fila in A])-vector(map(abs,A.diagonal())) )\n", "def discosG(A):\n", " B=matrix(CDF,A)\n", " cr=Gershgorin(B)\n", " discos= sum([ circle([c.real(),c.imag()],r,fill=true,alpha=0.2) for c,r in cr])\n", " return discos" ] }, { "cell_type": "code", "execution_count": 2, "id": "85ac3292", "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrr}\n", "4 & -1 & 1 \\\\\n", "-1 & -3 & 1 \\\\\n", "1 & 2 & 5\n", "\\end{array}\\right) \\left[-3.426743094681910?, 3.757942566075653?, 5.668800528606257?\\right]$$" ], "text/plain": [ "[ 4 -1 1]\n", "[-1 -3 1]\n", "[ 1 2 5] [-3.426743094681910?, 3.757942566075653?, 5.668800528606257?]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAEwCAYAAAA6vTwVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABIgElEQVR4nO3deZTc1XUv+l1T19RV1UP1oB40C4kWk4RkGzwEHMgNXA882zgmz8SzWY7gmSTO83KIARES2cGJE4e+BDsx2H52kuWBwMIJy77OBQ8Yg0wESAKN3epZPdc81+/98fWP6m611FP9xvp+1qoltdSqPuquOr/922effRyKoihCRERERJbnNHoARERERFQdDOyIiIiIbIKBHREREZFNMLAjIiIisgkGdkREREQ2wcCOiIiIyCYY2BERERHZBAM7IhtSFEXi8biwTSURUW1hYEdkQ4lEQiKRiCQSCaOHQkREOmJgR0RERGQTDOyITOihhx6Syy67TMLhsITDYbnqqqvkP//zP40eFhERmRwDOyIT6urqki984Qty8OBBOXjwoLz97W+Xd7/73XLkyBGjh0ZERCbmUFhdTWQJTU1N8sADD8jHPvaxJT83Ho9LJBKRWCwm4XBYh9EREZEZuI0eABFdWKlUku9+97uSSqXkqquuWvRzcrmc5HK51z+Ox+N6DY/I9splkUJh8Ucuh4ei4PPK5crv1bSJ0ynicJz7q88n4vWKeDyLPxwOY//fZE0M7IhM6pVXXpGrrrpKstms1NfXy2OPPSY9PT2Lfu6BAwdk//79Oo+QyB7KZZFMRiSdRpCmBmyZDB65nEixWHmUSpV/63CIuN2V36u/qg8RBHhzH+qflUqVj0VEXC4EdG43Hj6fiN+PR10d/s7nEwkE8CsDP1oMl2KJTCqfz8vAwIDMzs7K97//ffmnf/oneeaZZxYN7hbL2HV3d3MplmiBuUFcOi0yO4uHGsCpV0Q1YHO75wdbbjcCMC3MDR4XPuaOSw3umppEwmH8nsEeqRjYEVnEddddJ1u2bJGHH354yc9ljR3R8oI4NTOmLos6Tb6lsFQSyWYrj3KZwR7Nx6VYIotQFGVeVo6IzpXJIHibmsJjsSCuvl6kudn8QdxiXC6RYBAPlRrsZTIip07ND/aCQZFoFAFfJILgleyNgR2RCf3Zn/2Z3HDDDdLd3S2JREL+9V//VZ5++ml56qmnjB4akakoikgiIRKLiYyPI5hLpRAABQLWDuKW60LBXjotcuwY/qy+HkFeSwuCvLmfT/bBwI7IhM6ePSu33nqrjI6OSiQSkcsuu0yeeuopuf76640eGpHhSiUEcrOzImNj+DWXwwaD+npkp2p9+XFhsFcqIeAdGBDp68OGjMZGkbY2kYYGkVDI3sFvLWGNHZENscaO7CaXQwA3M4NgLpHApgI1K+fzGT1C61AULNsmEsjqeb2oy1u3DkFeJIINI2RNzNgREZEplcsI5kZH8UgmkYkLBkVaWyttRmhlHI7K5goRBM3JpMjhw/i7UEikuxvf43CY2U+r4duCiIhMJZcTmZwUGRzEr6USAozOTi4XasHrxaO5GVlQNcjzekXa20U6OlCbx0DaGvhjIrKR3t5e6e3tldLcDqpEFqAoIvE4NkAMDOD3Xi/q5biTUz9uN5ZjGxqwXDs8jAC7oUFkwwZsvOCmC3NjjR2RDbHGjqyiWERWbmQEtXO5HLJz4TCzc2ZRLGKzSiqF5duODtTjNTXxZ2RGDOyIbIiBHZldKiUyMSFy5gzq6JxO7NL0+40eGV1IMomfl8OB7F1XF37l5hXz4FIsERHpJpnEUuvgIHqsBYOo42L9ljXU1+ORz1fazYTDWKbt6mKAZwZ8KxERkeYyGQRz/f3I1jU1oSCfrKmuDrtmFQXLtC+/jIB982Ys1dbVGT3C2sWlWCIb4lIsmUUuhwL8vj4EAI2NyPCQvSgKegwmEthdu2ULM7FGYWBHZEMM7MhohQKW6U6fxjFf4TB2VrInmr2VSiLT08jQtreLbNyI0y24yUI/jKWJiKhqSiWRs2cR0E1MYBdldzcv7LXC5cJmCnW38/g4lmY3bsTSOwN77TGwIyKiNVMUBHKnTyOw83hwQedSXG1yu5GxUzO3Y2PYXLFhA+orSTt8yxHZCBsUkxFiMZGTJ1FL53Ri6Y1njZJIJcDPZrG5YnQUGdwtWypHmlF1scaOyIZYY0d6KJVwsT5xAjVVLS08JYIuLJ3GEm1Dg8j27Wh0zOXZ6mLVAxERrVgsJvLiiyKHDqGuqquLQR0tTa25zOdFXnhB5JVXEOxR9XAploiIlm1hlo51dLRSDgc2UmSzIqdOYdc0s3fVw4wdEREty2JZOgZ1tFo+H7N3WuBbkoiILohZOtIKs3fVx4wdERGdF7N0pAdm76qHb08iIjoHs3SkN2bvqoMZOyIimieXQ8bkpZeYpSP9zc3eHTwocuwYTrKg5eFblchG2KCY1ioeFzlyBI1k29vZwoSMoWbvUimRV19F1njHDhG/3+iRmR8bFBPZEBsU02qMj4scPiySSGD5y+UyekREyNyNjuJEk0suEYlEjB6RuXEploioximKSH8/lr2yWZHOTgZ1ZB51dVianZzEa3RszOgRmRsDOyKiGlYoiBw9ino6rxdZERaqk9k4naj1LBREfv1rbK4ol40elTmxxo6IqEal06hfOnNGpLWV9Utkfi0tqANV26Fs346MHlUwsCMiqkHT09gkMTmJpVfueiWrCIcRzKmteHp6ROrrjR6VefCtTERUY4aHEdTlcljecrIohyzG58MNycgIgrudO7GLllhjR0RUMxQFtUkvvoiPOzoY1JF1ud24MUkkUHc3PGz0iMyBb2kiohpQLoucPIl2JqGQSHOz0SMiWjuHo3IyxUsviQwNGT0i4zGwI7KR3t5e6enpkb179xo9FDKRchn1SEePijQ0ILAjspPmZtTdvfQSjsKrZWxQTGRDbFBMqlJJ5PhxHMvU1CQSDBo9IiLtzM6i5u7SS0XWr6/N1j3cPEFEZFOlkshrryGwi0ZFAgGjR0SkrYaGyrJsqSSyaVPtBXcM7IiIbEgN6o4dY486qi2RCIK5w4fxca0FdwzsiIhsplxGlu74cZwk4fMZPSIifakVKIcPY+f3xo2GDkdX3DxBZEIHDhyQvXv3SigUktbWVrnpppvk2LFjRg+LLEAN6l57DV36GdRRrQqH0bj48OHa2lDBwI7IhJ555hnZt2+fPPfcc/LjH/9YisWi/M7v/I6kUimjh0YmpihoaXLsGHYJcvmVal0kgvfBK6+IDA4aPRp9cFcskQVMTExIa2urPPPMM/K2t71tyc/nrtjaozYfPnIEBeQ8YomoYmZGJJ8XufxynFhhZ6yxMxlFESkUKo98fv7H5TIeioJfRVA/4HDgV5dLxOM5/6OWCkjtJBaLiYhIU1PTon+fy+Ukl8u9/nE8HtdlXGQeQ0Mir75qraCuXBYpFuc/CoXK7xWlMtepKQins3JahttdmfPc7vkPl4vzHVU0NopMTWFZ1uu19/FjzNgZpFxGr51USiSdFonH8WsmM3+SK5Uq/0adpByOykOkMvmpj7kWTnY+H1oeRCL4NRBAmprHCpmXoijy7ne/W2ZmZuRnP/vZop9z7733yv79+8/5c2bsasPkJI5UcrlwATObUkkkm8UjkxFJJnFO7dwgrlQ6d/4SufB8t5DLVQnqXC5cwNV5zufDw+tlwFfLxsZw43Pllda5AVopBnY6WBjExWKVJoq5HP5ezagtDMTca8ypLrwbLhaRBSwWEcx5vQjsGhvnB3uBACc/s9i3b5/88Ic/lJ///OfS1dW16OcslrHr7u5mYFcDkkkEdYkEjlYy2sIgLpGoBHLFIj5nblZt4WO11MyeGiSqj3y+EgR6vQjuwmE0amawV3sUBbV2HR0iu3bhtAq74VKsRgqFSgA3OoqgLpvFi8rjQTAVCiEdrOWEcqHgsFzGZJvNYsdQsYixeL0YW3s7lnUikbUHmLQ6d9xxhzzxxBPy05/+9LxBnYiI1+sVr9er48jIDPJ51NTNzOAwdCPHkUxi5WFqqrLyIIK5o64Oc4qW5SAOx4WDQzXIy+WwbD032Kuvx1xcX4+AjysY9uVwIKgbHkYCY+dO+/28mbGrokwGwdzUlMjZs7hTVRQEcfX11rgrVIO9VAr/H6cTE3JbG3bZRSJsn6AHRVHkjjvukMcee0yefvpp2bZt24r+PTdP2F+5jKDuxAkUg+t986Vm42ZnEVhmMvhzvx9zhBVqetVgL5PBrx4PLvbRaKVVBm9q7SmbFZmYwNFjW7YYPZrqYmC3RpkMArnxcdS5pNOYzOrr7TEpFIu4E08m8XEggN5YLS0I9BjkaeMP//AP5Tvf+Y48/vjjsn379tf/PBKJiH8ZPSwY2NnfqVNo4aBnrzq1lGRyEnNCNosMmV1qdQsF/B+zWczjfj/O121owMPq8znNl0ggibF7tznKGKqFgd0qKEpliXVkBC+OujoEcoGA9Se38ymX8SZIJjEBhsNY/mlrqxzhQtXhOM8385FHHpEPf/jDS/57Bnb2Njoq8uKLmG+0/vGWSlhinZioLLOqmxKssAqxWqUS/q/pNOZ8deWiqYln7trJ5CRuTvbsQfBuBwzsViCfx4tgaAiTXKGAgCYUsu/kdj7lMib7eBxBbVsbloOiUSxnkLEY2NnX7Cw2SxQKyNZpJZvF1xobQ5ZOURBE1mLT41IJN7SZDLKjzc343ofDa9vwQeYwPIyf6e7d9nh9M7BbhngcS60DA/i9x4PInsuQkM2ixqZUwvdFzeLZdSu5FTCws6dMBpm6yUltNksoClYgJidx85pOVzZTcRkSMhlcBxwO3Nirm8x4PbCuchk7ZTdtQs2d1V/rDOwuIJFAMDc4iDdzKMQ7tAsplXBnn0xiqWLDBpHubuwyI30xsLOfYhE1dX19eF9Vu+QjFsMS7+QkvpZaWlJrqxHLVSziGpHLYY7r6BBpbbVn+4xaUCigtKqnR2T7dmu/7hnYLSKdRjDX34/fNzUx+7RSySTqcUIh3AV1dfGOVg+9vb3S29srpVJJjh8/zsDORk6cQGDX0VHdcodkEsutY2MIVhoakKWj5VGUygYzte44GrV+1qcWpdNYfbrySmsfO8bAbo5cDmvtfX24e21s1L4w2c4UBd/HWAwXiy1bsPOId7TaY8bOXqamRJ5/Hhm0at1kZjJoyzQ6irmPrYzWplxGBi+dxrWjsxN1W1zhsZbJSdw4vfGN1l1tYmAnSMGOjoqcPi0yPY0Jjrs8q0dRcBeUSGCi27IFdSm8o9UOAzv7KBREDh5EcFeNlgy5HGqGR0YQhITD3OVZTWpJSqGA1Z7OTgR6du2WYDeKghKszZtFLrvMmj+3mg/sJiZEjh/HRBcM8g2opVIJAV46jcDuoosQ6FH1MbCzD3UJtqtrbdmfchnZCHUTmNprkzew2iiVsKu4VMJmMtYbW0c2i/fKnj3WXJKt2ZxJLocl11On8HFnJ1PmWnO5UHtSLCKQnp0V2bpVZONGtkghWszUlMjJk2tf0stkENCNjqJ+rr2dAZ3WXC783AqFSsuYDRuwwYLJA3NTzxA+dgxlRFYLyGvy5TUxIfLCCyJHj1bORGVQpx+3GwXgfj8yEeoyExFVFApYTSiVVl9Xpyi4iTp8GEuv6gkKDOr04/EgYyci8tpr+JmmUsaOiZbW3Izkw4kTyHZbSU1l7BZm6da6tEFrEwohuGP2juhc/f3IsK22X93CLF1bGwM6I6nNnZm9swaHA++ZM2fQjNpKS7I1E9hNTCCtOj6O5UCrpVbtSs3eJRLI3k1OsvaOaC1LsIqC+e7MGbTgaGxk+xKzULN3sRiyd7OzrL0zM6suydo+sCuVkKU7dgwfM0tnTguzd9u3I3vHu1mqNWtZgi0UENANDTFLZ2aRCHYij41hI8vmzUg4kPk0N6Ov7YkT1tkla4Ehrl4uh9qSw4cxQbKWztzU7J3Xi+zdq6/iQkXL19vbKz09PbJ3716jh0KrpC7Btrau7N9lMriBHRhgLZ0VqNm7UgnZu6Eh69Vy1QKHA+/FM2fwvrQC27Y7SSREjhxBwXB7O5cirCabxd3s+vU44sUqKXCzYLsTa1ptI+LZWdQOJxLI/PAG1lpSKfzsurpYZ2xWVmpcbMuM3cSEyK9/ja7qnZ0M6qzI58MkNzSEXbPT00aPiEhbxeLKl2AVBfPcq6+iP2RrK4M6K1J7qA4OIuuaThs9IlqouRm1kadO4X1nZrYK7BQF6dKDB3EH1NnJ0w2szO1GYXE8jvY0Q0Pmf0MRrZZ6XmtLy/I+v1TCfHfsGJaLolEuvVqZ14vAfHISgfrsrNEjorkcDrw3BwfNn2iwTWBXLOLNcOgQziJlA057cDhQd+d0irz4IgpYSyWjR0VUXfk8MgF+//JuRnM5vBf6+pDdi0S0HyNpz+VCcJfJoM/q2BhvZs3E78f1p7/f3D8XWwR2hQLeBK+9hrP5GhqMHhFVW1MTLl5HjuDnzOCO7GR0FPV1TU1Lf242i6BuZATLQ36/9uMj/TgclTY3x4+LDA+bO4ioNdEofiYTE0aP5Pwsv1BZKOBif/o0N0nYXX09shnHj2P32MUXc6mdrC+bRbYuFFq6Pk4N6iYnWU9nd+EwSopOnkRg19XFVSgz8HqxgtTXt/aj/rRi6YxdPo9WJqdPi6xbx6CuFvh8uKCdOIEsbbFo9IiI1mZoCPVUjY0X/rxMBjc1k5Oo9THjBYWqKxhEwH/qFGq72A7FHKJRLJOfPWv0SBZn2cBOzdT19aEGq67O6BGRXnw+ZGdPnmRwR9aWSmEOi0QunI1RM3XT0wzqak0ggODu9GluIDMLjweP06fN2WvVkoHdwqCOPX9qj9dbCe5efZU1dyo2KLaWwUH0L7vQ5odsFpm6qSn2qKtVDO7Mp7kZdXZjY0aP5FyWa1BcLCJLc/Ikll+Zqatt2SyOIbvoIpEdO3jRU7FBsfnF4yK//CUy0OfrW6fufp2YYKaO0N8ukRDZuhXtvFhzZ6zJSbx/3/Qmc5WCWSpjVy6jZ9PJk8jWMKgjtebu+PFKkTGRFZw5g7q58wV1xSIyNOPjDOoI1BNJTp82b31XLWlqQiZ9eNjokcxnqcBuYAB3r62t5oqOyVg+H9Lix45hmYLI7KanMZ81Ny/+92qzdfXMWAZ1pAoGcf3r62MTY6M5ndi93NeHmzSzsExgd/YslmDDYfZtonMFg7ibPXoU6XEis1KDtmIRr9nFjI6i/q6piUEdnSscRl3xqVM8fsxoDQ04amxw0OiRVFgisIvH0dbE4WCHdTq/xsbKxppk0ujREC1uZgbNhaPRxf9+ehoZgECAKxN0fk1NqLcz687MWuFwILgbGDBP1s70gV02W7lQL/cMRapd7e24cB49ij6HRGYzNoYLsc937t8lk5VDxkMh/cdG1qGeDzw+jgwwe9wZJxxGAsosp1GYOrArlXB81OgodsByBxAtxeHAa2VoCDV3nOzITDIZFFovtvKQzyP7kkot72gxIpcLr5WhIWSByRgOBzLsAwPmaL1l2sBOUbDLsa8PF2rWmdByud0ibW3IfPT3Gz0aooqJCSyfLczGlUqY6yYnkYXhTSwtl9eLnbL9/awvNlJjI8oopqeNHomJA7uzZ9HCoqmJbU1o5Xw+ZEVee8086XE9sEGxeZVKuKMPBs8N3EZHkXEx69mTZG7BIF43p09zM4VR1HPLzdD6xJQNijMZkeefxwu0tdXo0ZCVjY7iTmrv3tq6QWCDYvMZHxd57jlkk9WLgAgyeIcP48/O19OOaCmKgtdYezsatjtNm7axr1QK8cvVVxtbI2u6H72iYAlNPT6HaC1aW5H97eszeiRU69QaqLlBXbGIwvdcjkEdrY3DgZvYsTEEeKS/YBDBndHff9MFdupFuLWVdxy0di4XlrdOnqytJVkyl0QCF9yGhvl/PjaG1yVvYqka6upQhjIwwCVZo4RC6GlnZAsaU4VOmQx2MrrdbEJM1VNfj0zw8eNsgULGGB/HhTYYrPxZIoELQH096+qoesJhvNYGBtgVwAiRCE4EMXIji2kCOy7BkpbUJdnTp40eyfL89Kc/lXe+853S0dEhDodD/v3f/93oIdEqFQoI4ObW3HAJlrTCJVljuVxITg0NGXd2uWkCO/WiyyVY0oK6JHvqlDWWZFOplFx++eXy4IMPGj0UWqPJSdzBz+1dp150eRNLWuCSrLEaG/H+jsWM+frupT9Fe9kslmA9Hi7Bknbq67H8dfw4ap08HqNHdH433HCD3HDDDUYPg9ZIUXDn7vFUlluTSS7BkvbCYQQXAwMi27ezN6KefD5k6herq9WDKXJjw8NcgiV9tLZisrNbl/ZcLifxeHzeg4ynHjOkTu6KgtdeLscjw0hb6hmm4+M4ZpH0FQ4jtjGirtvwwC6dxi7YSIRLsKQ9lwsF7H19yBTbxYEDByQSibz+6O7uNnpIJFiCzWYr58LGYrjQGnEXT7XH68WvIyPmOOqqltTXIzs/O6v/1zY8lBocxF3tYmcnEmlBPfrFDB3Cq+Vzn/ucxGKx1x+Dg4NGD4kEtcNqUKcoaJhdLFYuuERaa2xEnSezdvpSyyyM+L4bGtjF4zjfrqmJ6/+kH6cTNxJ9ffYpLPZ6vRIOh+c9yFipFCZ1ddfrzAyydY2Nxo6LaovbXdmlWSwaPZraEgigzk7vbKmhgd2ZM7iwstaE9BaJ4MaCiS3SSiyG+S0QwMQ+PIybilo62o7MoaHB+N5qtSgUwoY9vUueDQvsZmZwUW1uNmoEVMscDmSK+/v1f9MtRzKZlEOHDsmhQ4dERKSvr08OHTokAwMDxg6Mlm1iAssxDgeW/qemWFtHxnC5sPw/PGzsiQi1xuPB91vvOjtDAjtFwQW1UJjfiZ1IT6EQMipnzhg9knMdPHhQdu3aJbt27RIRkT/+4z+WXbt2yd13323wyGg58nlkR0IhLH8ND1eWxIiMEA5XdmmTfvx+LMfq2azYkGlGLVxnexMyWnMzak+6u82VTbnmmmtEMaptOa3Z7Cx2xK1bV2lQzPmOjOR0oixAvfayJEAfoVBlPtCr7MyQjN3oKGpO1N1iREYJBtGO4uxZo0dCdqLuhHM4sGHC7WYzYjKe2oKDO2T14/PhGqPnKRS6B3bpNHrqsL0JmUU4jKxdLmf0SMgOSiUsvQQCWPqamcFrjMhoTifqvs6eFSmXjR5N7fB49D23V/fAbmICdww8+JrMwk61J729vdLT0yN79+41eig1Kx7HTrhQCMuw5bK5j6+j2hIOY2nQjJvG7CoUwuYpvZri6xrYlUo4ty4YZN86Mg+nEzvGBgetfxe7b98+OXr0qLzwwgtGD6Vmzc5iY1iphMCON7FkJh4P5jm2PtFPIIC+lnrtjtU1sJucxMYJMxWpE4mwOztVh6JgGdbvx2tJ7WNHZCZqNjmTMXoktcHpRDJrakqnr6fPl4GREfwHueWfzKauDnexo6NGj4SsLJPBEpfPVwnwuDpBZuP346aDN7L6CQYrpRla0y2wi8cx0TFbR2bV0ICbj1TK6JGQVaXTqKNRd8HxVB0yI4cDwd3ZszxmTC9+P2789MiS6hbYTUzgP8RlCTKrYBAbe1h7QquVTmM5dnoaqxNscUJmFQrh5oObKPTh9aLzgh7nk+sS2KlLXDxlgsxMvYsdHdW3SzjZRyyGTRMzM5zvyNzUmw4GdvpwOHBd0WNFSJfALpHgsgRZQ3195fB2opVQFAR0xSKWYtmAncwuEMAKBZdj9eF269OoWJfALhbD2Ylerx5fjWj11KJivQ9tJutT62fyeXzsNORcH6LlCwQw37GuWB8+H64tWm+g0GXqGRtjUEfW4HDgrsqqzYrZoNg46TRqNBMJ1hKTNbhcKB1IJIweSW3QawOF5oGduqWaTTrJKtQeT1Y8YowNio2TTld2xTKwI6vw+dBfjXXF2tNrA4Xmgd3sLJt0krUEg/p2CSd7iMVwJ14uczcsWYffj4wdl2O1p9cGCs0Du4kJTHJs0klWodZGsXknLZfa4iSV4qYJshavF0fgJZNGj6Q26LGBQtPALp/HkhZ3w5LVBINo3lkqGT0SsoJMBnNdoYAMCJGVeDy4MSHt6bGBQtPATk3vsp8TWU19Pe5geRdLyzF3JzU3ipHVqMuxhYLRI7E/PTZQaBrYpdPIeLDehKzG48Ekx352tBzpNCZqznVkRV4vVtj0OO6q1umxgULzjB17OZFVORzM2NHyqL3AmK0jK3K5Ko21SVvqBgotv9eahV1qMTHrTciq6uq4gYKWZ3YWGd66OqNHQrQ6DgdXKPSk5bK3ZoFdNosXCXeIkVX5fNarO2GDYmPMzKAYmhk7siqvl42K9eJyWbTGTm3UycCOrMrvr9ygWAUbFOuvXMZB6g4Ha+zIuurqMNdZ6UbWqtxui9bYceMEWR03UNByqD3AWE9MVsYNFPpxuy2asUskGNSR9XEDBS2lUECNHU/XISvjBgr9uN2YN7Tqk6pZYDc9zWVYsj5uoKClJBII/rlRjKyOGyj04XYjiM7ntXl+TQK7YhF9WrhDjKxOrTvhAdl0PmpdEjdOkNW53czY6UEN7LSqZ9QksCsUMGi3W4tnJ9KP1m9Asj7WE5NduN1IypC2LBnY5fMM7MgeGNjRUtQiaG6eIKtzuXD91vIcU8JcoSgWC+yYsSO7YGBHS0mnUZtEZHUuF7LPxaLRI6kNlgvsFIWTHVmf242JziqBHRsU648dAMgu1J2xDOz0YbnAjsgutEyZVxsbFOsvHufqBNkDM3b6cbm026jCwI5oGfiapsUoClqdeDxGj4Ro7Vwua93IWpnlArtMhksTZB8Oh3b9hsjaFAWTMzN2ZCfM2GnP4dBuk4pmgR0nOrILrY9/IetS6y95I0t2wsBOe5YL7Mplbv0n+3A4tDv6haytVELWjvMd2QkbsmvP4dDu+6xZYEdkF1reWZG1qa8LBnZEtFKWCuzY6oTshoEdLaZc5muD7IcZO+1pmTBYViWcoiiSSCSW/aSJhFMyGYd4vXx1kPWl0w5JJhWJx817Bc/lcpKbcxaQ+n6Nx+NGDakmxOMi2axHHA6Fh6eTLWSzDkmlFEkmzTvf2UE67RBFWfl1JRQKiWOJzJlDUZaOzePxuEQikRV86atFxC8iMyv4N0RmFRW8ltkbjhaqF5FPiUhKRGaNHQpRVbSKSJ+IDBo9EJtrFJGMiDy7on8Vi8UkHA5f8HOWlbELhUISi8WW/YWfe84pH/3oHfLtb//7sv/Ncv3BH/yBfPOb36z686ZSKfmf//NG+eEP/0OCwWBVn1urMVvxubX8PotoM+bJSYf80R/9gRw+/L+r+ryqvXv3rrmh8MKM3ejoqLzhDW+Qo0ePSmdn51qHeI5qjFnP59XquZNJkX/4h5J84Qufl7/7u6+I3++v6vPfc8/dsn//fVV9Tq2fW6vnzWQycued/w+/zxo/7+BgTu6//8OWmqO1fF6tnntoKCMf/OC7ZHBwcMlAba5QKLTk5ywrsHM4HCv6wvX1Ig6HS+rr65f9b5bL6XRq8ryqYDBY9efXcsxWfW4tvs8i2ow5nUY7i5W8B1bC5XJp9tyhUEiT59ZqzFp+L7R4brdbxOfLiIhT/H6/BAKBqj6/w+Gs+nNq/dxajllE+H3W+Hm9XizzWWmO1vJ5tXpuv98hIoqEw+Gqz0uabJ5wOkXe9a53afHU8v73v1+T59WSlmO26nNrRYsxK4rI+99/c9WfV7Vv3z7NnlsrWo1Zy++FFs/tdGq7I/b666+33HNrOWat8PtcgfIt7erjtbquWPNaqM33eVk1div1q1+JzMyItLRU+5m1k0wm5ZprfkuefvoZTTOCtc6K3+exMZGuLpHLLzd6JMs3NDQk3d3dMjg4KF1dXUYPx7byeZG//uuMfP7zn5OHH/4rTTNVtS6dTsttt31CHn74a/w+a+jMmYz8+Z+/X55++l8sM0dbUX9/St73vmslFvvf1sjY+XzWa+haV1cnn/jEJ6Wurs7oodiaFb/PxaKI12v0KFbG+5sBe602cItxuUR8Prdcd93viocHxmrK4/HITTe9h99njbndbrnllt+z1BxtRR6PRz7+8Y9pMkdrkrE7cULk6FFkOYisbnAQ2bpNm4weyfKpO9mXs4OKVq9cFnn4YZFYjPMd2cPZsyKXXCISjRo9EnsbHxdpbRW58srqP7cmGbu6OjY4JHthkoAW43SKBAJYkiWyOrVhLs96116ppN11RZPAjhdBshu+pul8IhEemk72UCohqGNgp71SSUSDbjIiomFgxyPFyA5KJWRlrBLY9fb2Sk9Pj+zdu9foodSMUMh6NcVEiymVUDfKwE57imLBjJ3LxbtYsr5iEZOcVeqI9+3bJ0ePHtWsyS+dKxjkebFkDwzs9GW5wM7tZmBH1qcGdlbJ2JH+1EMQWFdMVqfOdwzstKXOFQzsDJDP5+WWW26RPXuulGPHjhk9HFsZGRmR++67T975znfK1VdfLe9+97vlH//xH6VQKBg9tHkY2NFiDhw4IHv37pVQKCTXXvtG+f73/00GB0eMHpbtPfHEE3Lrrf+3fOtb3zJ6KLY0NTUjX//6Q/L2t79d3vzmN8stt9wir776qtHDspVisSi9vf8ot932UenqapPNmzfLfffdJ+Uqpv01ics9HjxMdo1esa985e+lpaVFTpw4bvRQbKe/v1/K5bLcddefSVdXt5w6dUruv/9+yWYzcuedf2T08F5XKKCGSsvTBch6nnnmGdm3b5/s3btXhodF9u17UR544O/kS1+6T7xen9HDs6VTp07J//k//yVdXeuNHootpVJJ+fKX/0Euv7xJvvKVr0hTU5MMDQ1JKMQmxdX0jW98Q37wgyfkT/7kHrn55nvkyJEX5CMf+YhEIhH59Kc/XZWvoUlg53CINDSg/5dV/eIXv5DnnntO/vqvH5Bnn/2F0cOxnauvvlquvvrq1z/u6uqSM2fOyPe+9z1TBXbZrEh3t9GjILN56qmnXv99V5fIBz6wXu6//1fS19cnO3ZcbODI7CmbzchDD/0v+djHPiaPP/640cOxpSeffFIaGprkT//0dmlvx591dHQYOygbeuWVl+XNb/4tefOb3yhbt4pcfPEG+Zd/+Rc5ePBg1b6GZnmISMS6GbupqSm5//775b77/kJ8Pt596yWZTJquma6iiJhsSGQydXUidXUpEfFLMMjshha+8Y1vyBVXXCGXXHKp0UOxrYMH/1u6uzvli1/cL9ddd538/u//vjz22GNGD8t2rrjiCvn1r1+S0dFBcbtFXnrpJfn5z38uN954Y9W+hmaBXSCA5SurFRQriiL33nuvvPe975Wenh6jh1MzhoYG5d/+7d/kfe97r9FDeV2xWGlAS3Q+brcijz32Lenu3ibdTO9W3S9/+Uvp7++X97//94weiq1NTMzKs88+LRs2tMqDDz4o733ve+WBBx6QJ5980uih2cqHPvRhueaa6+TWW98ndXUe2bVrl9x5551yyy23VO1raLb3JRjE+Zq5HM6ONdrDDz8sX/vaVy/4Od/85rfk5ZdfklQqJR/5yEd0Gpm9LPf7PDdonpiYkNtvv0Ouu+46uemm/0vrIS5bNovXLgM7upA777xdBgczcuutfyvlMusxq2lqalK+9a1vyWc/+1meXaoxRfHIhg1t8ulPf0ocDpEdO3bI6dOn5Xvf+5684x3vMHp4tvGjH/1IfvKTn8oXvnCP3Hhjtxw6dEjuvPNO6ejokA996ENV+RqaBXZ+Py6K6sXRaL/3e++X//E/fueCn7NuXYf88z//s7zyyity1VVXzfu7W2+9VW644QbZv3+/lsO0vOV+n1UTExNy2223yWWXXSZ33XWX1sNbkWwWGyfM8Ppdrt7eXunt7ZUSO+bq4o477pAnnnhCHnzwV3LiRIPk89Z6vZhdf3+fJBIx+fznP//6nylKSV577TX58Y9/LI888oi4XC4DR2gf4XCLbNjQOO9wgU2bNspPfvIT4wZlQ3//938v73nP7fKe99wo27aJXHrppXLmzBk5cOCA+QM7p1OksREbKBoatPoqy9fQ0CgNDY1Lft6f/uln5FOf+tTrH09OTsjtt98uBw4ckEsuuUTLIdrCcr/PIiLj4+Ny2223ycUXXyz33HOPOE2W6rDixol9+/bJvn37JB6PSyQSMXo4tqUoitxxxx3y2GOPydNPPy3ZbIecOmWeFQq76Om5RP7qr74w78+++tWvSkdHh7zjHe9gUFdFGzdukbNnX5r3Z2fODMi6desMGpE9ZbNZcTjmN713uVzmb3eiikRETp/W8itUX3v7/Bdx4DfrcF1dXdLW1mbEkGxpYmJCPvnJT0p7e7vceeedMjMz8/rfRaNRA0dWwY0TdD779u2T73znO/L4449LKBSSmZkJKZU8kkwGJBLhkmG1+P3+c+oWfT6v1NfXs56xisplkWuueZt85SvflK9//ety/fXXy5Ejh+Wxx34gd93150YPz1be9ra3yne/+z1561vrRFG2yn//93/L3/7t38pHP/rRqn0NTQO7uRsoeHYszfXcc8/J0NCgDA0Nyo033jDv7w4e/LVBo6pQz4hlfR0t5qGHHhIRkWuuueY3f9IqIu+Um2/+pHR2vsGoYRGtSj4vsmXLejlw4G756lf/Qb72ta9JZ2eH/MmffEZuuOGGpZ+Alu3Tn/5/xen8/+Rzn/u0TE6elo6ODrntttvk7rvvrtrXcCiKdvtW02mRn/0M9XbBoFZfhaj6Egnsin3rW7EJyGrUpdhYLGa6FjJ2lEiI/Md/iPT3i7S347xNIquYncVN7GWXMQmjtVgMya7f+i3tjm7TtKgpEECdXTKp5Vchqr5EQiQatWZQR/oLBESamxHQpdNGj4ZoZbJZvH4Z1Gkvm0WZmpbn8Wperd7WhoJiIqtQFGTrWlqMHglZhcsl0tSElQkGdmQlpRJev6GQ0SOpDfk8El5a0jywa2jA7g8Gd2QVmQwyMGbYzU3W0dhY2RFbxQ1uRJpKpzHfsVxKP1p/rzUP7EIhpB0TCa2/ElF1JJN4zXLjBK2EenH0erHcQmQF6TTKTrRcGiTI50U8Hu2vLZoHdk4niokzGa2/ElF1ZLN4zVqx3qS3t1d6enpk7969Rg+l5gQCIvX1XI4l61Azy1yG1Ucmo89pRrp0hG1sRIBXLOrx1YhWL59H6YBVl2H37dsnR48elRdeeMHoodScQAAdAPx+znVkDZkMXq8M7PShx8YJEZ0Cu0gEd7LcHUtml0hgkmOHEFopl6syabOumKwgna7UwZP29Ng4IaJTYOd2Y2mLgR2ZXSolsm4dD3Kn1WlsRIAXDuO1RGRWioIdsXoEGlShxyYV3S5fra2oWSoU9PqKRCuTzeLO1SQnmpEFBQKY56JR3J1r1/6daG1SKQQZPFJaH3ptnBDRMbBrasJkN+dIUCJTmZ3FDYhV6+vIeIEAbg6CQTyYtSOzSqUw37EJuz702jghomNg53SKdHcjK8K7WDKbUgnZ5K4ua+6GJXNQW54Ui7hoMrAjM8rlUCLV1GT0SGpHOo1lbz3ayuhaSdTSgtqTeFzPr0q0tFgMmTouw9JauFyoJ06ncUST281NFGQ+ySSCDO6G1U+hgJs9Pega2Pl8Ip2dDOzIfBIJZJQ9HqNHQlanFqP7/fg9m7OTmZRKyCi3tXF1Qi/ZLOIfveoZdd/7196Oiyc7s5NZpFJYQtPrbkpLbFBsvIYGtHdKp3HxLJXwIDKDZBKvT9YS6yeRqMwLetA9sItEcAHlJgoyi9lZ3HDYYVmCDYqNp+6snjuZs9UTmUU6jfmOR4jpJ5PR9zQj3QM7hwMF6mo6mMhIavudjg5jx0H20tKCOW5uzR03jZHR0ulKiQDpo1DAKqWeGVJD2rC2tOAxOWnEVyeqmJjAchk3TVA1RSJY3lcPWA8GmbUj48ViWDHTo0kugRGnGRkS2LndIps2IWPHhsVkFLXOc/NmnjRB1RUMIiuSTFY2jaVSlUPXifSm1hK3txs9ktqiLn27XPp9TcMuZ21tOLppYsKoEVCtm5xEWYAZs3V/+Zd/KVdffbUEAgFpYJWzJbW1VW4eWltx184dsmQERcFrr72d2To9qZum9F76NiywczqRtRPhDlnSXzqNzPGGDebc8p/P5+Xmm2+WT33qU0YPhVapoQFd/XM5bKjo6sLrjjtkSW/JJAI6Zuv0lUoZswPZ0H0x0Sgmu4EB/Eqkl6kpLMGatfP6/v37RUTk0UcfNXYgtGpqXU0igQAvGsWdeyxm3tcd2U+5jMDuootQFkD6SSSQPKir0/frGlpZ5HDgP+12406WSA/JJHaGbdhg9EiqJ5fLSTwen/cgYzmdKDfJZPCx241au0KBWTvSTzxeaTNG+lEUvM9bWvT/2oaXjDc1oeP/1JTRI6FaoCh4rW3YoF8XcD0cOHBAIpHI64/u7m6jh0SCJRiHo9LaqbkZc97srJGjolpRKqHUqbNT/6xRrUunsVnFiOuM4YGdCC6yfj+WKIi0NDuL5TEj4p57771XHA7HBR8HDx5c1XN/7nOfk1gs9vpjcHCwyqOn1WhsnB/IuVy4yJbLPEOWtDc7i9egGTeI2Z2RrWVM0Xs6EhHZulXk5ZfxTWBHbNJCoYBl2F27jHmz3X777fKBD3zggp+zcePGVT231+sVr9e7qn9L2nG5RNavF/n1r5GtczgQ6K1bJzI4qG83eqotagnA+vW8puqtWMTNW2enMV/fND/uDRvQfmJsjBspSBtjY8jUGfX6ikajEuWtc81pacHOOHWHnMOB12EsVsmoEFVTuYxjO7ds4UYdI8zO4vve3GzM1zfFUqwI7ijUXTus+6Zqm5lBlm7bNn0bRa7WwMCAHDp0SAYGBqRUKsmhQ4fk0KFDkuTxBZYTCODIurl1dT4fbmYLBS7JUvXNzCCo4FGJ+lMU3MStX2/ctcY0gZ0I7ly3bsUEyHNkqVrUJdiLLtL3WJe1uPvuu2XXrl1yzz33SDKZlF27dsmuXbtWXYNHxlq3Drtk8/nKn0WjuPBOT/McWaqeuUuw3DChv2QSmXkjdsOqTBXYieAutqMDy2ZE1WD0EuxqPProo6IoyjmPa665xuih0So0NmKin5mp/Jm6JBsOc5csVYe6BNvVxSVYo8RiqK0LBIwbg+kCOy7JUjVZbQmW7MnpxMU2m51/XiyXZKmauARrrHwe73WjT/gwXWAnMn9JtlAwejRkVbmc9ZZgyb5aWtABYOEN69wl2blBH9FKqE3+uQRrnJkZvM+N3hBlysBOBHex69eLjI5ysqOVK5WwBLtxo7WWYNeqt7dXenp6ZO/evUYPhRbwevFaTCTm/7m6JNvUhM4ARCtVKOCGQX0dkf7U3pRdXcjaGcmhKOYt202nRV58EVEwU8u0XIoiMjyM5pC7d+OCWmvi8bhEIhGJxWISZrrSNGIxkV/8Ahlkv3/+3yUSIkeP4gKh96HhZF2lksj4OOq6tm5lyYlR1DrZt7zF+GuOaTN2Iig+3LkTdSi8k6XlGh/HAew7dxr/BiOaKxwWaWubv4lCFQqh71iphHYJREtRFFwbo1GsTjCoM46aMTXDNcfUgZ0I1qp37kSqeeESBtFCs7NY2rrkEtbVkfk4HJUjxRZr6aReoBMJbqagpc3MIAGyebM5Aopalcng+9/WZvRIwPSBnQiWYXfswIs4mzV6NGRWmQw2S1x8MZZhicwoGsXOxampxf++owN1OtPTyN4RLSaZRMZuyxb0TSPjTE3hfWuWZIIlAjsR3JFs2SJy9iybF9O5ikUswW7dio03RGbldmM+KxQW3/XvdCJr19qKZTbzVkGTUXI5LNdv3mzcsVUEqZSIx4PrjlnOfbZMYOd0ImvX2SkyMsKdslRRKuE1sWEDWpuY5c1FdD5tbXicr3bY48FFOxRifTHNVyggm9vdbXy/NEK2bv1641uczGWZwE4EvXl27kSfGAZ3JIKgbngYE1xPDy6IRGbnciFwU1skLCYQQAba5zv/si3VlmIRgX5nJ25kjW6rUesSCbxPzbZKZLmXRX29yOWXo1fPyAiXKWpZuVwJ6i677Nz2EURm1tKCC/TExPk/JxJBFtrjYXBX60olvFY6OnBT4HYbPaLapijInG7ciMy6mVgusBPBN/Hyy9HraXiYwV0tKpcR2Le0iFx6KY4NIzYothKHAxcFt7tycPtiGhpwJJ7bjQsJ1R61V926dag158qE8WIxbJbo7jZ6JOcydYPipcRiIocOocVFRwfT0rVCzdRFowjwzXa3ZAZsUGwNiiLy8ssifX1LXyCmpkROnMByHAvma0exiEydGtTxuDDjlcsiQ0NYKdqyxejRnMvSoVAkIrJrV2VZljV39lcq4Q3V2ipyxRUM6sja1Kydz4f2FRfS3CyyfTuXZWtJoTA/U8egzhxmZrBZwqzHVVo6sBNBKvSKKzDpDQ+z75OdFYsI6trbkalj7yayg0gEu+qWs8za2Ijgrq4OWRzrrrfQUnK5ykaJrVsZ1JmFejKMmZtCWz6wE0HW5oor0D5gaIgd2+0om0Xg3t2NoI41dWQn69fjNR2LLf25DQ0I7oJB9PXkzaz9pNPICnV3I6hjTZ15TE2hDGjdOqNHcn62COxEkL3ZvRtR9NmzSy9rkHXE47hzvegiBPCBgNEjIqqu+nqRTZtQL7ycLFwkghNWWlqwVMebWfuYnUVgt3Urll+5+9U8ikWRfB5xhpmDbdsEdiJIi156Kc4JjcdZh2IHExOY5C69lH3qyN66uhCwLXfnayCAzN369QgGUilNh0caK5cx3zkcaMbf3c0NgWYzPo76brM3hrbdy8blQmuA3bvxMTdVWJO6ScLjEbnyStwhcZIjO/P7kZXOZJAVWA71hIqtW1GuMDOj7RhJG+qRiOEwbmBbWoweES2UTFbiC5fL6NFcmG0vlZ2dInv2oB5laIjny1pJPo96upYW/AzNfndEVC2dncjAnT27/I0RTieyfTt24IJz9ixvZq0km0WpSXs7fobsTmQ+pRIy6Vu2oL7O7Gwb2ImgDcqVVyKlPTKC4z/I3GIxkdFRtIDYvRtLU7R8bFBsbU4nMgKh0MqbEUejyPY0NCC4Y92duSkKltBjMRxJtW0b2t6Q+YyPY3Pmpk1Gj2R5LN2geLkKBZH+fpGTJ5G5a21lQarZFIsiY2OY2LZtQ9aCP6PVY4NiaxscFHnxRcxVK21zkcvh3w8P4z3U2Ii6LTKPfB6BezCIoK61lT8js0omUb/6hjdYI1snIlITl06PB8FCU5PI8eOY8Jqa2NzWLGIxPDo6UAze0GD0iIiM1dmJ5bkzZ7DMupKLvteLJaOGBvz7sTHMd2btuVVLFAVzXS6H+W79ep5xbWalEjZh7txpnaBOpEYydnMxe2cezNJphxk760smRX71K1xcVnuEWDaLGuOREdTfMXtnnIVZupYWbggzu9FR3BTt2WOtBtE1dxll9s4cmKUjurD6euySffFFBAWrubD4fMzeGY1ZOmtKJhF4X3SRtYI6kRrM2M01N3uXzyPVyuJVbWUyWGLy+5ml0xIzdvZQLou89NLqlmQXmpu9E0H2ju89baXT6KnKLJ21qO22du5E4sFqavptrWbvolEEeMPDuLuKRq0XoZtdLofmm243dhZt3Mgdr0RLUXfJTk/jsdolWZFK9q6pCcHd5CTejw0N5u/LZTXZLLJ0Xi/mu/Z2Jg2sZHwcPzOr7IJdqKYDO1VjIya3ri4EeCMjmPCiUd7RrlWhgAtIuYzv78aNuLCwzodoeaqxJKtyOPD+i0TQzHhoCDdcPh/6pzGbtDa5HFqYuN2Y79rb8fMj67DyEqyKYctvOBxIkzc3o+9dXx8KJ30+TIS8o12ZYhG7iQqFyp1PSwsDOqLVUHfJ9vcjYFhrAOZy4ca1oQHPOzyMLEUggHpjvk9XplBAhk5RMN91dLDRsBWp1y2r7YJdiIHdAk4n3pjRKAqN+/ow6fl8mAStGsHrJZdDJqBQwPdw82Y0dmRgrI/e3l7p7e2VUqlk9FCoitQMQjyOeamjozrP63ZjvmtuRuZuaAjP7/cjwOP79sJyOfxMymXcuHZ04DrBwNh6FAWrdd3duG5ZWU1vnliOfB5d3IeGKkuKDQ0ohuWbFxQF6Wt1CSIaxZujrY1L2Ubh5gl7mp4WOXgQv19Lvd35ZLP4GqOjOKnH6UTmibtoK8plNKxNpXCj39yMoK6xkUvZVjYygtf6nj24vlsZA7tlKpcrE97ICN7UwSCCvFoNXopFBHOpFO7uOztx989eWcZjYGdfw8OotwuHtavfKhaxtDgxgaWpfB7zXTBYu8FLPo9gt1DA96G9HWU6rKGzvulpXOP37NHmhklvDOxWIZXChHfmDAIbhwPFyIGA/Sc99W41HkemTq1JbGnB/5/MgYGdfSkKWjQdPoysuNbZtGQSF76zZ/F7jwfvdZ/P/jdwpRJalqTTWJZuaMD3vLER3weyvmQSNzG7d6N+1Q4Y2K2BWmg5OopAL53Gn9fX42GXTF6hgBd/MomJPBhEILduHQI71uGYDwM7eyuVRF55ReT0aVyM9HgPFgqon52YwI1dNosb2WAQQZ5d5oF8HnN5LoePg0HMc83NyJLaPZitJfk8akp37kRbIbv8bBnYVYnat2hqCne2iQQm30AAQZ7Vehhls/g/ZDIIUMNh3KmqrRJYc2NuDOzsL5fDkuz4OMog9LwoqfPD7CyCPfWm1udDIGSlm1pFwf8nna60kwkGUSscCtnrJp0q1CbEmzeLXHqpfW5MRBjYaUKtT5mdRTYvHsck7HQiIPL58DBLKr9QQACXzVbuUr1eBHDr1uHXSMReL3wz6+/vl7/4i7+Q//qv/5KxsTHp6OiQD37wg3LXXXdJ3TK3ZTOwqw3xODZTZLO48TKCmtFXb2zTacyBDgfmkbo6/GqW+SOfxyOXwzhFML5QCFm5UKg2ympqmaKgVrW1VWTXLuslXpbC+xANuN2V1P3mzbizTSZRmzY1hV8nJzEhzg32PB78Wy3uDhUFdyjFIia1uUGcx1Pp16cWA6sPu6SmreS1116TcrksDz/8sGzdulUOHz4sn/jEJySVSsmXvvQlo4dHJhIOi1xyCYK72Vljzlz2eFBz1tiIettUCjeKmQyCvUwGf1YqzQ/2XC7MdVoEfOp8VyphnlWDOEXBeL3eShDn81lzVYVWb2ICP/OdO+35c2fGzgBqDUc6PT/YKxQw+agtyBQFE6Ea7Llc+Fh9zKUolUexWHmoHI7KROrx4EWtBnGBAB5mySDSuR544AF56KGH5PTp04v+fS6Xk5waqQsydt3d3czY1Yj+fpwp29xsvgPm8/nKioAa7GWzlbmuXJ7/+epcpwZ8C+c79YqlzndqALewdaP6PG435jk1iPP77VUTSCujvv6uvNK4LLfWmLEzQF0dHurd9bZtCOryefw696EGgdksHuokqE5qIpWJz+nEr6EQJi+/H1/H45n/UP+MrCMWi0lTU9N5//7AgQOyf/9+HUdEZrJhA24Ojx1Dk1wzvb/V+W7u2dDq/Db3JrRYrGTX1IfI/JtWkfk3t04ngjZ11UO9CZ778HgYxBFkMlhBu/xy+wZ1IszYWc7cSU7N6ImcP5NH1nfq1CnZvXu3/M3f/I18/OMfX/RzmLGjQgE7Zfv7sZnCDgX/i813C+c8ouXIZrHRaPt2kR077F1DaeP/mj2pd6lz61Ncrkq2jszr3nvvFYfDccHHQfVYgd8YGRmR3/3d35Wbb775vEGdiIjX65VwODzvQbXF40HN0IYNKAyfW4phVYvNd04n5ztaGTWou+giBHZ2DupEmLEj0s3k5KRMTk5e8HM2btwovt9U846MjMi1114rb3zjG+XRRx8V5wpmI+6KrV25nMjLL4sMDtonc0e0WrkcetVt2ybS01Mby/J8yxPpJBqNSjQaXdbnDg8Py7XXXitXXnmlPPLIIysK6qi2eb3oy1Uu4/jDzs7auJgRLaQ2IN66VeTii2vnfcDAjshkRkZG5JprrpH169fLl770JZmYmHj979rb2w0cGVmFzydy2WUI7oaHGdxR7cnn0Ud282YEdbWUua6h/yqRNfzoRz+SkydPysmTJ6VrweGFrJyg5fL7sftPBMFdR0dtXdyodqnLr5s2YfnVTLvE9cAaOyIbYo0dqTIZ1NypmTsGd2Rn2SyO9dy8GZuJai2oE2HGjojI1tTMndPJDRVkb+ru123bam/5dS5WZBPZSG9vr/T09MjevXuNHgqZiFpzp7ZCKRSMHhFRdWUylZYmtRzUiXAplsiWuBRLi8nlRI4cQRPj1lbzHT9GtBqJBM5KVvvU1fpGoRqOaYmIaovaCsXrFTl5EscPzj3qi8hqJifRjPvSS7FZgp2hGNgREdUUjwdLVcGgyNGjyOK1tPAkB7KWchntTAIBlBmsW2f0iMyDsS0RUY1xOkU2bhS58kqRujrU3ZVKRo+KaHkKBWwEam4W2bOHQd1CzNgREdWotjbU2R05IjI0hAtkXZ3RoyI6v3RaZGICy647drBOdDEM7IiIalg4LLJrFy6QfX0iTU0i9fVGj4roXLOzIskkmg5v3VrbO18vhN8WIqIa5/Oh+NzvFzl2DMcxNTUZPSoiUBQ0HXa5cBPS3c2a0AthjR0REYnLhXYRu3dXCtPZDIuMViyiTCAYRE3o+vUM6pbCwI7IRtigmNbC4RDp6kJBeiiEAvV83uhRUa3KZLCxZ906vCZbWowekTWwQTGRDbFBMa1VKoVl2YEBZEu4NEt6KZexQaJUwpmv27ZxU89KsMaOiIjOEQyKXHGFSDQqcvw4sndtbbzAkrbUo8Gam3GKRFsbl15XioEdEREtyulETVNjo8iJE8je1dfjY6JqKpcrp0hs3y6yZQs29dDKMbAjIqILCoWYvSPtMEtXXQzsiIhoSczeUbUxS6cNBnZERLRsoZDI5Zcze0drwyyddhjYERHRirhc52bvgkF8zIszXcjCLN3mzTwWrNoY2BER0arMzd6pAV5TE/6caC5FwZFgiQReI8zSaYeBHZGN9Pb2Sm9vr5RKJaOHQjVCzd5Fo1iW7e8XmZnBElswaPToyAxiMQR1kQiOBOvo4NK9ltigmMiG2KCYjJJIIHM3MIBTK6JRFsTXqmRSZHoam2w2bsSpJlx21R4zdkREVDWhkMjOncjKnDmDcz4VBQEeszS1IZNBHZ3PhyXX9esR3JE+GNgREVHVNTaKNDQgS9PXJzI6imXbaFTEzSuPLeVyOArM7camiA0bsPxK+uLbi4iINOFwIJBrakJrCzXA83pRg+dyGT1CqoZCARm6chmB/MaN+JlzY4QxGNgREZGmnE6R9naRlhaRsTGR06dFRkZEPB5k9ViDZ02pFDZFKAp+vps24WfMgM5YDOyIiEgXLpdIZ6dIayuW7IaG8GuhIBIO48GgwNxKJZF4HI9AAPVzHR3MwJoJd8US2RB3xZIVqL3Nzp5FkKcGCw0NyOaReWSz+FkVCpXaybY29iw0I2bsiIjIEA4HNlk0NqIua2ICvfDGxxH0NTRwN6WRFKWSnfN4kGnt7OQOZ7NjYEdkI2xQTFbl84l0dyNwmJpCDd7YGH5fX4/dldxNq49CAdm5dBrL4zt2IDvX0MClcivgUiyRDXEpluwgmUT2bnAQgYYIlmpDIS7VVls2i+93Oo0AurkZgXZLCze3WA3vf4iIyJTq6/Ho7sYxZTMzyOJNTiKr5Pfj73mawcopCoK4RAInhHi9yM5t3YrMXGMjdjOT9TBjR2RDzNiRXam7MmdnEeTNziLb5PEgkxcIMCA5n1IJWblkEj3n/H70m1OXWevr+b2zA2bsiIjIMlyu+RsukkkcMj8+jnq8mRnUgdXXiwSDXLLN5dBvLpWqfF82bcIGiEgEgTDZCwM7IiKyJIcDWbpQCO031JYc09OVjReFAj6vrg61Yn6/fYO9XA7fg0wG/28R/L+DQfSba2pCMMcdrfbGpVgiE3rXu94lhw4dkvHxcWlsbJTrrrtOvvjFL0pHR8ey/j2XYqnWFYvIUqXTyOrNzKCeLJu1frCnKKiLWyyI8/kQvDU2IhsXDOJXNg+uHQzsiEzoy1/+slx11VWybt06GR4els985jMiIvLss88u698zsCM6V6GAQO9CwZ7bff6HXhQF9XDF4rkPBnG0FAZ2RBbwxBNPyE033SS5XE48y0gtMLAjWp6FwV46jSxYJjM/oJrbGnJhAOhyVfq7ORzzH+oVVlEqD/VjNXgrFPDr3Od3ueZ/Db8fgZy6QYRBHJ0Pa+yITG56elq+/e1vy9VXX33eoC6Xy0kul3v943g8rtfwiCzN40HWKxKZ/+flciXoKhSw9Dn392rwl80iQFsscJtLDfTm/t7trrRr8fuRhfN4Kg/1Y7ebjYFp+RjYEZnUZz/7WXnwwQclnU7Lm970JnnyySfP+7kHDhyQ/fv36zg6IntzOhFYLbXRQM28zQ3s5j7Ol8lTs3IM2KjauBRLpJN77713yeDrhRdekD179oiIyOTkpExPT8uZM2dk//79EolE5MknnxTHIleCxTJ23d3dXIolIqoxDOyIdDI5OSmTk5MX/JyNGzeKb5Hze4aGhqS7u1ueffZZueqqq5b8WqyxIyKqTVyKJdJJNBqVaDS6qn+r3n/NzcoREREtxMCOyGSef/55ef755+Utb3mLNDY2yunTp+Xuu++WLVu2LCtbR0REtYunwhGZjN/vlx/84Afy27/927J9+3b56Ec/Kpdccok888wz4vV6jR4eERGZGGvsiGxIURRJJBISCoUW3WxBRET2xMCOiIiIyCa4FEtERERkEwzsiIiIiGyCgR0RERGRTTCwIyIiIrIJBnZERERENsHAjoiIiMgmGNgRERER2QQDOyIiIiKbYGBHREREZBMM7IiIiIhs4v8H5M/It0VGziAAAAAASUVORK5CYII=\n", "text/plain": [ "Graphics object consisting of 3 graphics primitives" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A = matrix([[4,-1,1],[-1,-3,1],[1,2,5]])\n", "show(A,A.eigenvalues())\n", "discosG(A)" ] }, { "cell_type": "code", "execution_count": null, "id": "f36b686f-e381-470e-bb94-d0554908757c", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "d712e005-e37e-4890-bf70-34fbe810b8f0", "metadata": {}, "source": [ "